ISSN 1991-2927
 

АПУ № 2 (48) 2017

Рубрика: "МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ"

УДК 621.377

Иванов Александр Куприянович, ФНПЦ АО «НПО «Марс», доктор технических наук, окончил физический факультет Иркутского государственного университета, аспирантуру Московского высшего технического училища им. Н.Э. Баумана, докторантуру Ульяновского государственного технического университета. Главный научный сотрудник ФНПЦ АО «НПО «Марс». Имеет монографии, учебное пособие, статьи в области математического моделирования иерархических АСУ реального времени. [e-mail: mars@mv.ru]А.К. Иванов

Математические модели управления знаниями в проектных организациях000_2.pdf

Рассмотрены проблемы управления знаниями в организации, занимающейся проектированием автоматизированных систем. Знания определены как информация, используемая в производственном процессе. Показано, что ключевым моментом преобразования информации в знания является наличие формализованных моделей или неформализованных способов получения проектных решений. Приведены примеры знаний, используемых в организации для проектирования автоматизированных систем управления с применением соответствующих моделей. Построены математические модели последовательного преобразования данных в информацию, информации в знания и знаний в проектные решения в виде линейных систем дифференциальных уравнений и нелинейных систем Лотки и Вольтерра. Учитывались варианты поступления данных из внешних и внутренних источников, а также устаревание данных, информации и знаний. Для линейных систем получены аналитические решения, для нелинейных систем проведены исследования устойчивости методом Ляпунова и определен характер особых точек. Установлены основные направления развития системы управления знаниями с целью повышения конкурентоспособности разрабатываемых изделий.

Проектные организации, автоматизированные системы, управление знаниями, математические модели.

2017_ 2

Рубрика: Математическое моделирование

Тематика: Математическое моделирование.


УДК 621.396

Самойленко Марина Витальевна, Московский авиационный институт , кандидат технических наук, окончила Московский авиационный институт и Московский физико-технический институт. Доцент Московского авиационного института (национального исследовательского университета). Занимается томографическим подходом в обработке сигналов, имеет 11 патентов на изобретения, 2 монографии и 9 статей. [e-mail: Samoi.Mar@mail.ru]М.В. Самойленко

Томографический метод восстановления сигнала после прохождения через фильтр с известной характеристикой000_3.pdf

Предложен метод восстановления входного сигнала фильтра по измеренному выходному сигналу и импульсной характеристике фильтра. Известным методом решения задачи восстановления входного сигнала является метод инверсной фильтрации. Однако этот метод с неизбежностью искажает восстанавливаемый сигнал либо за счёт эффекта просачивания мощности в соседние области частот при протяженном сигнале, либо за счёт невозможности вычислить бесконечный спектр входного сигнала посредством деления спектра выходного сигнала на передаточную функцию. Предлагаемый метод реализуется без перехода в частотную область. Он основан на томографическом подходе в обработке сигналов, развиваемом автором. Согласно этому подходу, решение ищется с позиции восстановления искомой функции (входного сигнала) по множеству значений её интегралов, полученных при различающихся условиях интегрирования. В качестве таких значений используются значения выходного сигнала, измеренные в дискретные моменты времени. Множество выходных сигналов (интегралов) составляют отображение, по которому восстанавливается оригинал - входной сигнал. Полученные математические выражения позволяют восстановить его расчетным путем в дискретизированной форме, в виде вектора. При этом матрица восстановления, используемая в расчетах, формируется по дискретным значениям импульсной характеристики фильтра и может быть вычислена заранее, после чего в оперативном режиме останется провести измерения выходного сигнала и составленный из них вектор умножить на заранее вычисленную матрицу. Шаг дискретизации определяется априори и может меняться с целью повышения точности восстановления или уменьшения времени обработки. Томографический метод позволяет восстанавливать как непрерывные сигналы, так и одиночные импульсы и импульсные последовательности. Для иллюстрации его работы в статье приведены результаты компьютерного моделирования.

Восстановление сигнала, томографический подход в обработке сигналов, импульсная характеристика, матрица отображения, матрица восстановления.

2017_ 2

Рубрика: Математическое моделирование

Тематика: Математическое моделирование.


УДК 621.391.037.3

Наместников Сергей Михайлович, Ульяновский государственный технический университет, кандидат технических наук, окончил Ульяновский государственный технический университет, доцент кафедры «Телекоммуникации» УлГТУ. Имеет статьи в области статистической обработки сигналов и помехоустойчивого кодирования. [e-mail: sernam@ulstu.ru]С.М. Наместников,

Чилихин Николай Юрьевич, Ульяновский государственный технический университет, кандидат технических наук, окончил УлГТУ, доцент кафедры «Телекоммуникации» УлГТУ. Имеет монографию и статьи в области помехоустойчивого кодирования и защиты информации. [e-mail: n.chilikhin@gmail.com]Н.Ю. Чилихин

Многомерные кодовые конструкции с применением расстояния бхаттачария000_4.pdf

В статье рассматривается применение расстояния Бхаттачария (РБх) в многомерных кодовых конструкциях для управления избыточной составляющей. Предложенный подход является компромиссом между высокими требованиями к пропускной способности и уровню вероятности ошибки на бит. Многомерные кодовые конструкции достаточно эффективно решают задачу исправления ошибок (естественного и антропогенного характера), возникающих в канале связи. Однако увеличение кодового расстояния за счет создания многомерности приводит к значительному уменьшению кодовой скорости и, как следствие, уменьшению информационной пропускной способности. В этом случае РБх является по сути гибким и эффективным инструментом решения поставленной задачи. Простота применения РБх в схеме полярного кодирования делает этот механизм удобным для проектировщика систем связи, а высокие корректирующие способности полярных кодов позволяют использовать их в качестве внутренних кодов для построения схем каскадного кодирования и кодов размерности 3D. РБх активно применяется для определения сходства между двумя и более множествами. В теории кодирования данный инструмент получил широкое применение в вопросе разнесения кодовых комбинаций в евклидовом пространстве и создания механизма управления порождающей матрицей с целью формирования непрерывного множества кодовых сочетаний. Такие сочетания образуют множество информационных символов, которые варьируются в пределах k = {1, n - 1} за исключением отсутствия передачи и безызбыточной передачи.

Адаптивная система, информационно-управляющий комплекс, каскадное кодирование, коды размерности 3d, матрица арикана, мягкие решения символов, мягкое декодирование, обратная связь, помехоустойчивые коды, полярные коды, расстояние бхаттачария, 3d codes.

2017_ 2

Рубрика: Математическое моделирование

Тематика: Математическое моделирование.


УДК 004.942

Цыганов Андрей Владимирович, Ульяновский государственный педагогический университет им. И.Н. Ульянова, кандидат физико-математических наук, доцент кафедры высшей математики Ульяновского государственного педагогического универ-ситета им. И.Н. Ульянова. Имеет научные публикации, монографии, учебно-методические пособия и свидетельства о регистрации программ. Область научных интересов: метаэвристические и гибридные алгоритмы стохастической и дискретной минимизации. [e-mail: andrew.tsyganov@gmail.com]А.В. Цыганов,

Семушин Иннокентий Васильевич, Ульяновский государственный университет, доктор технических наук, профессор кафедры «Информационные технологии» Ульяновского государственного университета. Имеет монографии, статьи, учебные пособия и патенты на изобретения. Область научных интересов: фильтрация и управление в условиях неопределенности. [e-mail: kentvsem@yandex.ru]И.В. Семушин,

Цыганова Юлия Владимировна, Ульяновский государственный университет, кандидат физико-математических наук, доцент кафедры «Информационные технологии» УлГУ. Имеет научные публикации, монографию, учебно-методические пособия и свидетельства о регистрации программ. Область научных интересов: параметрическая идентификация, адаптивная фильтрация и численно эффективные алгоритмы для стохастических систем. [e-mail: tsyganovajv@gmail.com]Ю.В. Цыганова,

Голубков Алексей Владимирович, Ульяновский государственный педагогический университет им. И.Н. Ульянова, магистрант факультета физико-математического и технологического образования УлГПУ им. И.Н. Ульянова. Имеет научные публикации и свидетельства о регистрации программ. Область научных интересов: математическое моделирование и программирование. [e-mail: kr8589@gmail.com]А.В. Голубков,

Винокуров Станислав Дмитриевич, Ульяновский государственный педагогический университет им. И.Н. Ульянова, аспирант кафедры высшей математики УлГПУ им. И.Н. Ульянова. Имеет научные публикации и свидетельства о регистрации программ. Область научных интересов: математическое моделирование и программирование. [e-mail: phoenixdragonvista@ya.ru]С.Д. Винокуров

Метаэвристические алгоритмы в задаче идентификации параметров математической модели движущегося объекта000_3.pdf

В статье рассмотрены вопросы применения метаэвристических алгоритмов для решения задачи параметрической идентификации математической модели кругового движения объекта при повороте влево/вправо. Неизвестным параметром, подлежащим идентификации, является радиус кругового движения. Предложены алгоритмы параметрической идентификации, основанные на численной минимизации критерия идентификации с помощью метода имитации отжига и генетического алгоритма. В качестве критерия идентификации выбрана логарифмическая функция правдоподобия. Проведены численные эксперименты для сравнения вычислительных свойств предложенных алгоритмов.

Стохастические линейные системы, параметрическая идентификация, адаптивная фильтрация, метаэвристические алгоритмы.

2017_ 1

Рубрика: Математическое моделирование

Тематика: Математическое моделирование, Архитектура корабельных систем .


УДК 621.1.016+532.526

Ковальногов Владислав Николаевич, Ульяновский государственный технический университет, доктор технических наук, заведующий кафедрой «Тепловая и топливная энергетика» Ульяновского государственного технического университета, окончил Казанский государственный университет. Имеет статьи, монографии и изобретения в области моделирования, исследования и оптимизации тепловых и гидрогазодинамических процессов в энергоустановках и технологическом оборудовании. [e-mail: kvn@ulstu.ru]В.Н. Ковальногов,

Чукалин Андрей Валентинович, Ульяновский государственный технический университет, аспирант кафедры «Тепловая и топливная энергетика» УлГТУ, окончил УлГТУ. Имеет статьи в области численного моделирования гидрогазодинамических процессов. [e-mail: chukalin.andrej@mail.ru]А.В. Чукалин,

Хахалева Лариса Валерьевна, Ульяновский государственный технический университет, кандидат технических наук, доцент кафедры «Тепловая и топливная энергетика» УлГТУ, окончила УлГТУ. Имеет статьи и изобретения в области численного моделирования гидрогазодинамических процессов. [e-mail: larvall@mail.ru]Л.В. Хахалева,

Федоров Руслан Владимирович, Ульяновский государственный технический университет, кандидат технических наук, доцент кафедры «Тепловая и топливная энергетика» УлГТУ, окончил УлГТУ. Имеет статьи, монографии и изобретения в области численного моделирования гидрогазодинамических процессов. [e-mail: r.fedorov@ulstu.ru]Р.В. Федоров,

Плеханова Анна Алексеевна, Ульяновский государственный технический университет, студентка 3 курса направления «Теплоэнергетика и теплотехника» энергетического факультета УлГТУ [e-mail: nyutka73@mail.ru]А.А. Плеханова

Исследование влияния количества демпфирующих полостей на сопротивление трения турбулентного потока000_5.pdf

В результате экспериментального и численного исследования турбулентного потока с воздействиями на основе модифицированной модели пути смешения Прандтля с использованием анализа пульсаций давления, произведен расчет структуры и сопротивления трения турбулентного потока. разработанные модель турбулентного обмена и метод расчета позволяют адекватно учесть особенности обменных процессов при наличии демпфирующих полостей и прогнозировать сопротивление трения с помощью предварительного расчета. Экспериментально установлена возможность снижения коэффициента сопротивления трения турбулентного потока с помощью демпфирующих полостей до 35%. Выполнено обобщение влияния количества демпфирующих полостей на сопротивление трения.

Демпфирующие полости, математическое моделирование, сопротивление трения, турбулентный поток.

2017_ 1

Рубрика: Математическое моделирование

Тематика: Математическое моделирование, Системы автоматизации проектирования .


УДК 531.1; 531.66; 004.942

Манжосов Владимир Кузьмич, Ульяновский государственный технический университет, доктор технических наук, профессор, окончил машиностроительный факультет Фрунзенского политехнического института, профессор кафедры «Теоретическая и прикладная механика и строительные конструкции» Ульяновского государственного технического университета. Имеет статьи, монографии, изобретения в области динамики машин, моделирования процессов удара. [e-mail: v.manjosov@ulstu.ru]В.К. Манжосов,

Рожков Артем Юрьевич, Ульяновский государственный технический университет, аспирант, окончил факультет информационных систем и технологий УлГТУ. Имеет статьи в области моделирования процессов удара. [e-mail: tpm@ulstu.ru]А.Ю. Рожков

Моделирование продольного удара жесткого твердого тела по стержню, взаимодействующему с жесткой преградой000_4.pdf

Удар твердого тела по стержню с жесткой преградой на основе волновой модели продольного удара рассматривается в многочисленных работах отечественных и зарубежных исследователей. используются различные методы решения волнового уравнения для определения ударной силы и напряженно-деформированного состояния стержня. однако построение аналитических решений представляет громоздкую процедуру и, как правило, ограничивается несколькими циклами распространения формируемой волны деформации от ударного сечения до жесткой преграды и обратно. Эта процедура осложняется тем, что ударная система - механическая система с неудерживающими связями, и анализ динамического процесса требует определения момента разрыва контакта и перехода при этом разрыве к иному математическому описанию движения системы. В статье рассмотрена волновая модель продольного удара твердого тела по стержню. стержень представлен множеством сопряженных элементов малой длины с учётом волновых процессов внутри каждого элемента, преобразования волн на границах сопряжения элементов и неудерживающей связи в ударном сечении. Представлены результаты моделирования, обеспечивающего возможность анализа процесса удара, формирования и распространения волн деформаций в ударной системе, построения диаграмм напряженно-деформированного состояния стержневой системы в произвольный момент времени в процессе удара.

2017_ 1

Рубрика: Математическое моделирование

Тематика: Математическое моделирование.


УДК 519.248:658.562.012.7

Клячкин Владимир Николаевич, Ульяновский государственный технический университет, Доктор технических наук, профессор, окончил механический факультет Ульяновского политехнического института. В настоящее время профессор кафедры «Прикладная математика и информатика» Ульяновского государственного технического университета. Имеет научные труды в области надежности и статистических методов. [e-mail: v_kl@mail.ru]В.Н. Клячкин,

Зенцова Екатерина Александровна, Ульяновский государственный технический университет, Окончила факультет информационных систем и технологий УлГТУ, аспирантка кафедры «Прикладная математика и информатика» УлГТУ. Имеет статьи в области статистического контроля процессов. [e-mail: e_zentsova@mail.ru]Е.А. Зенцова

Построение адаптивных планов при многомерном статистическом контроле процессов000_6.pdf

Статистический контроль технологического процесса применяется для технологического обеспечения требуемого уровня качества путем своевременного вмешательства в ход процесса при нарушении его стабильности. Качество изделия, изготавливаемого в технологическом процессе, характеризуется несколькими показателями, часть из которых коррелированна. статистический контроль проводится отдельно для групп коррелированных и независимых показателей. Независимые показатели качества технологического процесса могут контролироваться с помощью стандартных карт Шухарта. Для контроля процесса по совокупности коррелированных показателей применяют многомерную контрольную карту Хотеллинга, основное назначение которой - отслеживание уровня настройки многопараметрического процесса. В ходе мониторинга карта позволяет обнаруживать большие смещения уровня настройки процесса, при этом малые смещения часто ею игнорируются. Для повышения эффективности обнаружения малых смещений предложено построение адаптивного плана контроля, параметры которого корректируются по результатам прогноза изменения уровня настройки в соответствии с текущим состоянием процесса. Характеристики плана стандартизированы по единым принципам с целью корректного сравнения адаптивных планов контроля.

Адаптивный план контроля, контрольная карта хотеллинга, марковские цепи.

2017_ 1

Рубрика: Математическое моделирование

Тематика: Математическое моделирование.


УДК 519.248:658.562.012.7

Зенцова Екатерина Александровна, Ульяновский государственный технический университет, окончила факультет информационных систем и технологий Ульяновского государственного технического университета, аспирантка кафедры «Прикладная математика и информатика» УлГТУ. Имеет статьи в области статистического контроля процессов. [e-mail: e_zentsova@mail.ru]Е.А. Зенцова

Сравнительный анализ подходов к оптимизации параметров контрольной карты хотеллинга000_7.pdf

В многопараметрическом процессе качество изготавливаемого изделия определяется множеством показателей. Применение одномерных контрольных карт для каждого отдельного показателя при наличии взаимосвязей между ними нецелесообразно, так как результаты независимого контроля могут оказаться недостоверными, возможны как необоснованные остановки процесса для наладки, так и пропуски реальных нарушений стабильности процесса. Поэтому статистический контроль процесса с коррелированными показателями качества осуществляется с использованием многомерных контрольных карт. Наиболее распространенным статистическим инструментом многомерного контроля является карта Хотеллинга. она применяется для анализа стабильности технологического процесса и позволяет обнаруживать большие смещения уровня настройки процесса. Для обеспечения диагностики малых смещений в настоящей работе предложено применение адаптивных планов контроля с различными наборами переменных параметров. использование предупреждающей границы в таких планах и усиление контроля при ее превышении способствуют раннему обнаружению момента разладки процесса. Для адаптивных планов определены условия корректного сравнения и сформулирована постановка задачи оптимизации. Критерием оптимальности служит величина, характеризующая время между моментом разладки процесса и получением сигнала от карты. В качестве метода решения задачи оптимизации предложен генетический алгоритм. В ходе исследования построены шесть адаптивных планов и проведен сравнительный анализ чувствительности этих планов к различным видам смещений уровня настройки процесса.

Адаптивный план контроля, контрольная карта хотеллинга, марковские цепи, генетический алгоритм.

2017_ 1

Рубрика: Математическое моделирование

Тематика: Математическое моделирование.


УДК 621.396.96, 621.396.969

Васильев Константин Константинович, Ульяновский государственный технический университет, доктор технических наук, профессор, заслуженный деятель науки и техники РФ, член-корреспондент АН республики Татарстан. Окончил радиотехнический факультет и аспирантуру Ленинградского электротехнического института им. В.И. Ульянова (Ленина). Заведующий кафедрой «Телекоммуникации» Ульяновского государственного технического университета. Имеет монографии, учебные пособия и статьи в области статистического синтеза и анализа информационных систем. [e-mail: vkk@ulstu.ru]К.К. Васильев,

Лучков Николай Владимирович, ФНПЦ АО «НПО «Марс», кандидат технических наук. Окончил радиотехнический факультет и аспирантуру на кафедре «Телекоммуникации» УлГТУ. Ведущий инженер-исследователь ФНПЦ АО «НПО «Марс». Имеет статьи в области статистических методов обработки сигналов. [e-mail: nik-lnv@mail.ru]Н.В. Лучков

Траекторная обработка на основе нелинейной фильтрации000_1.pdf

Рассмотрены задачи траекторной обработки радиолокационных наблюдений воздушных целей. В обеспечение траекторной обработки проведено моделирование первичных отметок радиолокационных целей с их пеленгами, углами места и амплитудами, на основе которых и сформированы для дальнейшей траекторной обработки единые координатные сигналы с максимально точными пространственными координатами и минимальной вероятностью дробления группы отметок от одной цели на две или большее число групп. Для организации траекторной обработки использованы многомодельные байесовские алгоритмы одновременного различения типов целей (моделей) и оценивания изменяющихся траекторных параметров. описана методика вычисления размера строба для отождествления наблюдений и траекторий. формирование набора отметок, которые в последующем используются для выделения траектории и оценки ее параметров, осуществлено при помощи операций стробирования и накопления отметок. В ходе обеих этих операций произведена селекция отметок, которые в принципе могут соответствовать отметкам от цели с известными динамическими характеристиками, а значит - потенциально составлять ее траекторию. При этом стробирование имеет дело с индивидуальными отметками, а накоплению в течение заданного временного интервала подвергаются отметки, прошедшие стробирование. Приведены математические модели изменения состояния в декартовой системе при наблюдении в сферических координатах и соответствующие уравнения нелинейного векторного оценивания. разработан комплекс программ и представлены некоторые результаты математического моделирования процесса траекторной обработки. Таким образом, предложенные методы и алгоритмы позволяют реализовать интегрированный подход к освещению обстановки театра военных действий с использованием всех имеющихся в наличии средств и могут стать основой при разработке протоколов единого информационно-управляющего пространства реального времени.

Радиолокация, статистические методы, траекторная обработка, обнаружение, различение, оценивание, нелинейный фильтр.

2017_ 1

Рубрика: Автоматизированные системы управления

Тематика: Автоматизированные системы управления, Математическое моделирование, Архитектура корабельных систем .


УДК 531.36 : 534.1

Андреев Александр Сергеевич, Ульяновский государственный университет, доктор физико-математических наук, профессор, окончил механикоматематический факультет Ташкентского государственного университета. Декан факультета математики, информационных и авиационных технологий Ульяновского государственного университета, заведующий кафедрой «Информационная безопасность и теория управления» УлГУ. Имеет статьи, учебные пособия, монографию в области теории устойчивости и управления движением механических систем. [e-mail: AndreevAS@ulsu.ru]А.С. Андреев,

Перегудова Ольга Алексеевна, Ульяновский государственный университет, доктор физико-математических наук, доцент, окончила механикоматематический факультет УлГУ. Профессор кафедры «Информационная безопасность и теория управления» УлГУ. Имеет статьи, учебные пособия, монографию в области теории устойчивости и управления движением механических систем. [e-mail: peregudovaoa@sv.ulsu.ru]О.А. Перегудова

Об управлении движением механической системы с учетом динамики приводов000_3.pdf

В статье решена задача о стабилизации программного движения голономной механической системы с учетом динамики приводов. Как известно, реализация управляющих сил и моментов для механических систем происходит с помощью исполнительных устройств (приводов), динамика которых оказывает влияние на процесс движения. Поэтому требование точности реализации управления современными механическими системами приводит к необходимости учитывать динамику приводов. Сложность задач построения законов управления для математических моделей механических систем с приводами состоит в том, что число степеней свободы такой системы выше размерности вектора управляющих сигналов. В работе использовано представление модели механической системы с приводом в виде каскадного соединения двух подсистем: механической и приводов. При этом вектор управления для механической подсистемы является состоянием подсистемы приводов. Такое представление позволяет решать задачу управления в виде двухшаговой процедуры. На первом шаге строится закон управления механической подсистемой в виде непрерывно-дифференцируемой функции времени, координат и скоростей, который осуществляет стабилизацию заданного программного движения. А затем на втором шаге для подсистемы приводов строится релейный закон управления, обеспечивающий асимптотическую устойчивость построенного выше стабилизирующего закона. Особенностью полученного в работе результата является применение знакопостоянной функции Ляпунова, что позволило существенно упростить выкладки по обоснованию релейного закона управления, а также условия его реализации. В качестве примера решена задача стабилизации программного движения пространственного трехзвенного манипулятора, управляемого при помощи трех независимых электроприводов постоянного тока.

Механическая система, стабилизация, программное движение, динамика приводов, знакопостоянная функция ляпунова.

2016_ 4

Рубрика: Математическое моделирование

Тематика: Математическое моделирование.


УДК 621. 914. 3-181

Кирилин Юрий Васильевич, Ульяновский государственный технический университет, доктор технических наук, профессор Ульяновского государственного технического университета, окончил механический факультет Ульяновского политехнического института. Имеет статьи, монографии, изобретения в области расчета и конструирования металлорежущих станков. [e-mail: kirilin51@mail.ru]Ю.В. Кирилин,

Демидов Сергей Анатольевич, Ульяновский государственный технический университет, аспирант кафедры «Металлорежущие станки и инструменты» УлГТУ, окончил машиностроительный факультет Мордовского государственного технического университета. Имеет статьи в области расчета металлорежущих станков. [e-mail: jilardino17@yandex.ru]С.А. Демидов,

Спиридонов Егор Анатольевич, ФНПЦ АО «НПО «Марс», аспирант кафедры «Металлорежущие станки и инструменты» УлГТУ, окончил машиностроительный факультет УлГТУ. Инженер-конструктор ФНПЦ АО «НПО «Марс». Имеет статьи в области расчета и конструирования металлорежущих станков. [e-mail: mars@mv.ru]Е.А. Спиридонов

Анализ влияния качества сетки твердотельных конечных элементов на точность расчетов динамических характеристик несущих систем станков000_4.pdf

В статье выполнен расчетный анализ статических и динамических характеристик стойки вертикально-фрезерного станка, представлены результаты расчетного анализа влияния качества сетки твердотельных конечных элементов на точность расчетов статических и динамических характеристик базовых деталей несущей системы металлорежущих станков. Показаны четыре способа разбиения модели стойки вертикально-фрезерного станка мод. 654 сеткой конечных элементов с построением амплитудно-частотных характеристик для каждого способа. Для оценки адекватности разрабатываемых расчетных моделей выполнено экспериментальное исследование стойки вертикально-фрезерного станка мод. 654 и построена ее экспериментальная амплитудно-частотная характеристика. Произведено сравнение результатов расчетного анализа с экспериментальными данными и выбран наилучший способ разбиения модели сеткой конечных элементов, который следует использовать для моделирования базовых деталей несущей системы вертикальнофрезерного станка.

Металлорежущий станок, виброустойчивость, жесткость, динамические характеристики, несущая система, базовые детали, динамическая податливость, резонансная частота.

2016_ 4

Рубрика: Математическое моделирование

Тематика: Математическое моделирование.


УДК 519.246.8

Кувайскова Юлия Евгеньевна, Ульяновский государственный технический университет, кандидат технических наук, доцент, окончила экономико-математический факультет Ульяновского государственного технического университета. Доцент кафедры «Прикладная математика и информатика» УлГТУ. Имеет работы в области моделирования и прогнозирования временных рядов. [e-mail: u.kuvaiskova@mail.ru]Ю.Е. Кувайскова,

Алёшина Анна Александровна, АО «Ульяновское конструкторское бюро приборостроения», кандидат технических наук, окончила экономико-математический факультет УлГТУ. Инженер-программист АО «Ульяновское конструкторское бюро приборостроения». Имеет работы в области моделирования и прогнозирования временных рядов. [e-mail: a2nia@mail.ru]А.А. Алёшина

Применение адаптивного регрессионного моделирования при описании и прогнозировании технического состояния объекта000_5.pdf

Безопасное функционирование технического объекта является важной задачей. Система управления техническим объектом часто включает подсистему мониторинга множества его параметров, и решение по управлению объектом принимается с учетом его технического состояния. Эффективность работы такой подсистемы существенно зависит от точности прогнозирования параметров технического объекта. Поэтому необходимо построение адекватных математических моделей контролируемых параметров объекта с последующим их использованием для прогнозирования состояния объекта и, соответственно, обеспечения эффективных и оперативных управленческих решений. Для решения поставленных задач в статье описываются алгоритмы математического моделирования и прогнозирования технического состояния объекта, основанные на адаптивном регрессионном моделировании, позволяющие повысить точность предсказаний до нескольких раз. Высокоточные результаты прогнозирования состояния объекта используются при принятии решений по управлению объектом. Эффективность предлагаемых алгоритмов исследуется на примере моделирования и прогнозирования технического состояния объекта.

Адаптивное регрессионное моделирование, временной ряд, прогнозирование, технический объект.

2016_ 4

Рубрика: Математическое моделирование

Тематика: Математическое моделирование.


УДК 004.8

Афанасьева Татьяна Васильевна, Ульяновский государственный технический университет, доктор технических наук, доцент, заместитель заведующего кафедрой «Информационные системы» Ульяновского государственного технического университета. Окончила радиотехнический факультет УлГТУ. Имеет статьи и монографии в области интеллектуального анализа временных рядов. [e-mail: tv.afanasjeva@gmail.com]Т.В. Афанасьева,

Сапунков Алексей Андреевич, Ульяновский государственный технический университет, аспирант кафедры «Информационные системы» УлГТУ, окончил факультет информационных систем и технологий УлГТУ. Имеет работы в области интеллектуального анализа временных рядов. [e-mail: sapalks@gmail.com]А.А. Сапунков,

Заварзин Денис Валерьевич, Ульяновский государственный технический университет, аспирант кафедры «Информационные системы» УлГТУ, окончил факультет информационных систем и технологий УлГТУ. Имеет работы в области интеллектуального анализа временных рядов. [e-mail: dzavarzin91@gmail.com]Д.В. Заварзин

Применение алгоритма кластеризации k-means для улучшения темпоральной статистики просмотра коммерческих предложений000_6.pdf

Аномалии рассматриваются как нетипичные и редко встречающиеся значения, значительно искажающие данные. Обычно такие значения приводят к неточным результатам в процессе анализа данных, поэтому они должны быть удалены. В статье предлагается применение метода кластеризации k-means для решения практической задачи по обработке данных для отображения темпоральной статистики в секторе b2b. Предметной областью и источником данных является сервис отправки и трекинга коммерческих предложений B2BFamily. В статье предлагается удалять аномалии и отображать более адекватную темпоральную статистику о среднем времени просмотра слайда коммерческого предложения. Это поможет менеджеру по продажам корректировать стратегию общения с клиентами. В заключении обсуждаются полученные результаты и дальнейшие тенденции развития данного исследования.

Кластеризация, аномалии, алгоритм кластеризации k-means, обнаружение и удаление аномалий.

2016_ 4

Рубрика: Математическое моделирование

Тематика: Математическое моделирование.


УДК 621.391.037

Гладких Анатолий Афанасьевич, Ульяновский государственный технический университет, доктор технических наук, окончил Военную академию связи им. С.М. Буденного, адъюнктуру ВАС, профессор кафедры «Телекоммуникации» Ульяновского государственного технического университета. Имеет монографию, учебные пособия, статьи и патенты РФ в области помехоустойчивого кодирования и защиты информации. [e-mail: a.gladkikh@ulstu.ru]А.А. Гладких,

Ал Тамими Таква Флайиих Хасан, Ульяновский государственный технический университет, аспирантка кафедры «Телекоммуникации» УлГТУ, окончила обучение в магистратуре и получила степень магистра в области компьютерных наук в Институте информатики для аспирантуры (Комиссия Ирака по компьютерам и информатике в Багдаде), работала преподавателем в инженерном колледже университета Диялы. Имеет статьи в области помехоустойчивого кодирования и защиты информации. [e-mail: taqwa75@mail.ru]Т.Ф. Ал Тамими

Математическая модель телекоммуникационных систем, используемых в интегрированных информационно-управляющих комплексах000_4.pdf

В статье рассматривается метод эффективной обработки кодовых комбинаций помехоустойчивых кодов, который опирается на возможность лексикографического разбиения пространства кодовых комбинаций на кластеры. Это позволяет на регулярной основе реализовать способ списочного декодирования кодовых векторов с использованием единственного списка, к которому относится кластер с нулевым номером. Показывается, что вектор любого другого кластера с использованием несложных преобразований может быть приведен к вектору нулевого кластера. Доказывается, что рассматриваемый метод применим к двоичным и недвоичным кодам.

Помехоустойчивый код, списочное декодирование, двоичные коды, недвоичные коды.

2016_ 3

Рубрика: Математическое моделирование

Тематика: Математическое моделирование, Автоматизированные системы управления , Архитектура корабельных систем .


УДК 621.391.037.3

Гладких Анатолий Афанасьевич, Ульяновский государственныйо технический университет, доктор технических наук, окончил Военную академию связи им. С.М. Буденного, адъюнктуру ВАС, профессор кафедры «Телекоммуникации» Ульяновского государственного технического университета. Имеет монографию, учебные пособия, статьи и патенты РФ в области помехоустойчивого кодирования и защиты информации. [e-mail: a.gladkikh@ulstu.ru]А.А. Гладких,

Наместников Сергей Михайлович, Ульяновский государственныйо технический университет, кандидат технических наук, окончил УлГТУ, аспирантуру там же, доцент кафедры «Телекоммуникации» УлГТУ. Имеет, статьи в области статистической обработки сигналов. [e-mail: sernam@ulstu.ru]С.М. Наместников,

Пчелин Никита Александрович, ФНПЦ АО «НПО «Марс», окончил Ульяновское высшее военное командное училище связи. Главный конструктор ФНПЦ АО «НПО «Марс». Имеет публикации в области помехоустойчивого кодирования. [e-mail: pna3@yandex.ru]Н.А. Пчелин,

Шагарова Анна Александровна, Ульяновский институт гражданской авиации им. главного маршала авиации Б.П. Бугаева, старший преподаватель кафедры «Общепрофессиональные дисциплины» Ульяновского института гражданской авиации им. главного маршала авиации Б.П. Бугаева, г. Ульяновск. Имеет публикации в области разнесенного приема сигналов в сетях беспроводной передачи информации. [e-mail: Nutka82@list.ru]А.А. Шагарова

Статические свойства и особенности формирования мягких решений недвоичных символов избыточных кодов000_5.pdf

В статье рассматриваются способы формирования мягких решений символов (МРС), используемые в системах с двоичной модуляцией. На основе испытаний оригинальных статистических моделей раскрываются свойства таких решений, показываются возможности их использования для решения задач адаптивной обработки сигналов. Учитывая особенности построения каскадных схем кодеков, впервые рассматривается задача формирования оценок надежности недвоичных символов на основе комплексной оценки результатов декодирования комбинаций внутреннего кода и статистических показателей МРС, полученных для символов этих комбинаций из непрерывного канала связи.

Мягкое решение символа, мягкое решение недвоичного символа, каскадное кодирование.

2016_ 3

Рубрика: Математическое моделирование

Тематика: Математическое моделирование, Автоматизированные системы управления , Архитектура корабельных систем .


УДК 004.627

Агеева Нина Сергеевна, Военная академия связи им. С.М. Буденного, младший научный сотрудник научно-исследовательской лаборатории Военной академии связи им. С.М. Буденного, г. Санкт-Петербург; соискатель Военной академии связи. Окончила инженерно-физический факультет Санкт-Петербургского национального исследовательского университета информационных технологий, механики и оптики. Имеет публикации и патенты в области кодирования и декодирования подвижных изображений. [e-mail: n.4geeva@gmail.com]Н.С. Агеева

Разработка взаимоувязанной системы показателей качества методов сжатия видеоданных для систем реального времени000_6.pdf

В работе на основе проведённого анализа основных существующих методов и алгоритмов кодирования видеоданных разработана взаимоувязанная система показателей качества методов сжатия видеоданных. Подобная система показателей качества имеет важное значение для формирования и передачи видеоинформации в системах, функционирующих в режиме времени, близком к реальному. Такими системами могут быть, например, системы передачи данных с борта беспилотного летательного аппарата на наземный пункт управления (НПУ). Приводятся результаты исследования проведенного в работе математического моделирования методов и алгоритмов сжатия видеоданных, позволяющие проводить анализ взаимного влияния критериев качества, а также их влияние на качество полученных видеоданных на НПУ.

Беспилотные летательные аппараты, сжатие видеоданных, восстановление видеоданных, неортогональное преобразование, ортогональное преобразование, фрактальное преобразование видеоданных, косинусное преобразование, вейвлет-преобразование, идентификация подвижных объектов, система показателей качества преобразования видеоданных, каналы связи, энтропийное кодирование, энтропийное декодирование.

2016_ 3

Рубрика: Математическое моделирование

Тематика: Математическое моделирование, Автоматизированные системы управления , Архитектура корабельных систем .


УДК 519.248

Клячкин Владимир Николаевич, Ульяновский государственный технический университет, доктор технических наук, профессор, окончил механический факультет Ульяновского политехнического института. В настоящее время профессор кафедры «Прикладная математика и информатика» Ульяновского государственного технического университета. Имеет научные труды в области надежности и статистических методов. [e-mail: v_kl@mail.ru]В.Н. Клячкин,

Карпунина Ирина Николаевна, Ульяновский институт гражданской авиации им. Главного маршала авиации Б.П. Бугаева, кандидат технических наук, доцент, окончила Московский авиационный институт, доцент кафедры «Общепрофессиональные дисциплины» Ульяновского института гражданской авиации им. Главного маршала авиации Б.П. Бугаева. Область научных интересов: динамика и прочность машин, надежность. [e-mail: karpunina53@yandex.ru]И.Н. Карпунина,

Федорова Мария Константиновна, Ульяновский государственный технический университет, окончила факультет информационных систем и технологий УлГТУ. Область научных интересов: компьютерные технологии статистического анализа данных. [e-mail: mashulka3031_94@mail.ru]М.К. Федорова

Оценка стабильности температурного режима компьютера000_7.pdf

Температурный режим существенно влияет на долговечность компьютера. Обеспечение надежности функционирования компьютера предполагает стабильный уровень температуры нагрева основных компонентов, не превышающий заданных значений. В статье рассматриваются вопросы, связанные со своевременным предупреждением о возможном нарушении стабильности температурного режима. Для диагностики стабильности предлагается использовать методы многомерного статистического контроля. Оценка стабильности режима проводится по двум критериям - по стабильности среднего уровня температур и их рассеяния. Независимые параметры могут контролироваться с помощью стандартных карт Шухарта. Для коррелированных параметров используются алгоритмы, основанные на статистике Хотеллинга (для оценки стабильности среднего уровня процесса изменения температур) и обобщенной дисперсии (для оценки стабильности рассеяния процесса). Эффективность этих алгоритмов может быть повышена путем анализа неслучайных структур на контрольных картах, использования предупреждающей границы, а также применения модификаций на базе кумулятивных сумм или экспоненциально взвешенных скользящих средних. В настоящей статье предложена методика многомерного статистического контроля температурного режима компьютера, включающая проведение контроля в условиях отлаженного процесса по обучающей выборке с целью разделения контролируемых параметров на группы независимых и коррелированных, анализ процесса для оценки характеристик контроля и постоянный мониторинг процесса с построением карт Хотеллинга и обобщенной дисперсии с выявлением возможных нарушений процесса на основе наличия неслучайных структур и использования предупреждающей границы. Эта методика проиллюстрирована на примере контроля пяти параметров температурного режима компьютера.

Стабильность, температурный режим, алгоритм хотеллинга, предупреждающая граница, обобщенная дисперсия, контрольная карта.

2016_ 3

Рубрика: Математическое моделирование

Тематика: Математическое моделирование, Автоматизированные системы управления , Электротехника и электронные устройства .


УДК 519.6

Кадырова Гульнара Ривальевна, Ульяновский государственный технический университет, кандидат технических наук, окончила радиотехнический факультет Ульяновского политехнического института. Доцент кафедры «Прикладная математика и информатика» УлГТУ. Имеет статьи, монографии, учебные пособия в области статистического моделирования, программных информационных систем. [e-mail: gulya@ulstu.ru]Г.Р. Кадырова

Модификация метода пошаговой регрессии для получения математических моделей прогноза поведения объекта000_8.pdf

В статье представлен алгоритм модифицированной версии метода пошаговой регрессии, реализованный в статистическом пакете «Система поиска оптимальных регрессий» (СПОР). Данный метод используется для поиска оптимальной структуры модели процессов или функционирования технических объектов, предназначенной, помимо их описания, для оптимизации, управления и прогноза. Основным инструментом положительного воздействия на прогностические свойства модели является алгоритм поиска ее оптимальной структуры. Обычно при невозможности применить полный однокритериальный перебор структур прибегают к тому или иному виду неполного перебора. При этом регулярный или случайный перебор в условиях ограничения типа (≤) на количество слагаемых в модели обеспечивает достаточно эффективный учет систематических составляющих. Проведенные исследования позволяют считать данный метод перспективным математическим подходом для сокращения размерности модели и повышения точности определения ее параметров и прогноза.

Регрессионное моделирование, прогнозирование, методы структурной идентификации, пошаговая регрессия, меры качества, статистический пакет.

2016_ 3

Рубрика: Математическое моделирование

Тематика: Математическое моделирование, Исследование операций и принятие решений.


УДК 621.377

Иванов Александр Куприянович, ФНПЦ АО «НПО «Марс», доктор технических наук, заслуженный деятель науки и техники Ульяновской области, окончил физический факультет Иркутского государственного университета, аспирантуру Московского высшего технического училища им. Н.Э. Баумана, докторантуру Ульяновского государственного технического университета. Главный научный сотрудник ФНПЦ АО «НПО «Марс». Имеет монографии, учебное пособие, статьи в области математического моделирования иерархических АСУ реального времени. [e-mail: mars@mv.ru]А.К. Иванов

Динамические модели информационных процессов иерархических систем управления000_1.pdf

На основе единой нумерации объектов иерархической системы управления построена динамическая модель процессов освещения обстановки и планирования управления. Для каждого объекта системы составлены системы дифференциальных уравнений, описывающие информационные процессы. Получены аналитические решения для трех низших уровней иерархии при освещении обстановки и для трех высших уровней иерархии при планировании управления. Аналитические решения представляют собой зависимости объемов информационных ресурсов от времени, скорости обработки информации и объема исходных данных. Построение модели основано на условии сохранения объема информационных ресурсов при всех преобразованиях. Показана реальная возможность аналитического решения дифференциальных уравнений для объектов всех уровней. Приведены результаты расчетов информационных процессов в двухуровневых системах. Построенные модели позволяют оперативно и без существенных затрат проводить исследования определенных свойств системы в различных ситуациях, например, оценить время цикла управления при изменениях скорости обработки информации на объектах. На этапах проектирования использование моделей дает возможность формализовать и автоматизировать поиск оптимальных проектных решений, обеспечивая повышение качества и снижение стоимости.

Иерархические системы управления, информационные процессы, дифференциальные модели.

2016_ 3

Рубрика: Автоматизированные системы управления

Тематика: Автоматизированные системы управления, Математическое моделирование, Информационные системы.


УДК 621.377

Иванов Александр Куприянович, ФНПЦ АО «НПО «Марс», доктор технических наук, заслуженный деятель науки и техники Ульяновской области, окончил физический факультет Иркутского государственного университета, аспирантуру Московского высшего технического училища им. Н.Э. Баумана, докторантуру Ульяновского государственного технического университета. Главный научный сотрудник ФНПЦ АО «НПО «Марс». Имеет монографии, учебное пособие, статьи в области математического моделирования иерархических АСУ реального времени. [e-mail: mars@mv.ru]А.К. Иванов,

Кукин Андрей Евгеньевич, ФНПЦ АО «НПО «Марс», аспирант кафедры «Телекоммуникационные технологии и сети» Ульяновского государственного университета, окончил факультет информационных технологий УлГУ. Инженерпрограммист ФНПЦ АО «НПО «Марс». Имеет статьи в области разработки программного обеспечения для АСУ. [e-mail: mars@mv.ru]А.Е. Кукин,

Чернышев Илья Васильевич, Ульяновский государственный технический университет, кандидат военных наук, окончил Новосибирский электротехнический институт связи, адьюнктуру Военной академии связи им. С.М. Буденного, УлГТУ. Доцент кафедры «Экономика и менеджмент» экономико-математического факультета УлГТУ. Имеет учебные пособия, статьи в области разработки и моделирования автоматизированных систем управления. [e-mail: chernyshev@ulstu.ru]И.В. Чернышев

Оптимизация вероятностно-временных характеристик системы с использованием имитационной модели000_2.pdf

Рассмотрена актуальная задача повышения оперативности иерархической системы управления реального времени за счет рационального распределения ресурсов и уменьшения времени разработки управляющих документов на объектах системы. Описан порядок построения теоретической зависимости вероятностно-временных характеристик (ВВХ) системы от соответствующих характеристик объектов. Приведен алгоритм разработки приближенных аналитических зависимостей на основе аппроксимации экспериментальных данных, полученных имитационным моделированием. Формально поставлена и решена задача распределения ресурсов в иерархической системе управления по объектам с целью оптимизации ВВХ. Показано, что при существующей производительности вычислительной техники в качестве целевой функции можно использовать имитационную модель системы вместо приближенной аналитической зависимости. Имитационная модель включает множество экспериментов, в каждом из которых устанавливаются случайные значения времени разработки управляющих документов на объектах и в соответствии со структурой и алгоритмом функционирования определяются системные характеристики. Применение имитационных моделей значительно расширяет класс задач проектирования сложных систем, решаемых с использованием методов исследования операций.

Автоматизированная система управления, оперативность, оптимальное проектирование, имитационная модель.

2016_ 3

Рубрика: Автоматизированные системы управления

Тематика: Автоматизированные системы управления, Математическое моделирование, Информационные системы, Исследование операций и принятие решений.


УДК 62-83:681.5

Кочетков Владимир Петрович, Хакасский технический институт - филиал ФГАОУ ВПО «Сибирский федеральный университет», доктор технических наук, профессор кафедры «Электроэнергетика» Хакасского технического института - филиала ФГАОУ ВПО «Сибирский федеральный университет». Имеет статьи, монографии и изобретения в области моделирования, исследования и оптимизации автоматизированного электропривода, электропривода машин горнодобывающего комплекса. [e-mail: kochetkov-vp@yandex.ru]В.П. Кочетков,

Курочкин Никита Сергеевич, Хакасский технический институт - филиал ФГАОУ ВПО «Сибирский федеральный университет», аспирант кафедры «Электроэнергетика» ХТИ - филиала СФУ, окончил СФУ. Имеет статьи и изобретения в области моделирования, исследования и оптимизации автоматизированного электропривода, электропривода машин горнодобывающего комплекса. [e-mail: nikita-kurochkin@yandex.ru]Н.С. Курочкин,

Коловский Алексей Владимирович, Хакасский технический институт - филиал ФГАОУ ВПО «Сибирский федеральный университет», кандидат технических наук, доцент кафедры «Электроэнергетика» ХТИ - филиала СФУ. Имеет статьи в области разработки законов управления автоматизированного электропривода. [e-mail: Aleksey_a_v@list.ru]А.В. Коловский,

Глушкин Евгений Яковлевич, Хакасский технический институт - филиал ФГАОУ ВПО «Сибирский федеральный университет», кандидат технических наук, доцент кафедры «Электроэнергетика» ХТИ - филиала СФУ. Имеет статьи в области разработки законов управления автоматизированного электропривода. [e-mail: master8850@mail.ru]Е.Я. Глушкин

Моделирование и исследование динамики электропривода поворота экскаватора с комбинированной оптимальной системой управления000_3.pdf

Повышение качества автоматизированного электропривода - один из наиболее эффективных и экономичных путей улучшения надежности и долговечности, уменьшения времени простоя в ремонте горных машин. В настоящее время парк экскаваторов в России, который насчитывает десятки тысяч машин, примерно на 80% изношен, что обуславливает необходимость проведения ремонтных работ, 30-40% от стоимости экскаватора составляет ремонт венцовой шестерни электропривода поворотного механизма. Оптимизация управления приводом поворота приводит к уменьшению динамической нагрузки венцовой шестерни. Уменьшение динамических нагрузок осуществляется за счет электрической части привода, что повышает надежность и долговечность системы. Поэтому создание систем автоматизированного управления электроприводом требует использования математических моделей. Рассмотрен электропривод поворотного механизма, имеющего наибольшее число отказов в механической и электрической частях экскаватора, с комбинированной оптимальной системой управления, представляющей внутренний контур питающего напряжения и аналитически конструируемый оптимальный регулятор по току якорной цепи, скорости двигателя, моменту упругому и скорости второй массы, расположенный в прямом канале системы управления. Для исследования электропривода создана имитационная модель в программе MATLAB пакете simulink.

Автоматизированный электропривод, комбинированная оптимальная система, аналитически конструируемый оптимальный регулятор.

2016_ 3

Рубрика: Автоматизированные системы управления

Тематика: Автоматизированные системы управления, Математическое моделирование, Системы автоматизации проектирования .


УДК 65.012.122

Тронин Вадим Георгиевич, Ульяновский государственный технический университет, кандидат технических наук, начальник научно-исследовательского отдела Ульяновского государственного технического университета, доцент кафедры «Информационные системы» УлГТУ. Сфера научных интересов - наукометрия, моделирование вычислительных сетей на прикладном уровне, технологии эффективного управления. [e-mail: v.tronin@ulstu.ru]В.Г. Тронин,

Аввакумова Валерия Сергеевна, ФНПЦ АО «НПО «Марс», магистрант, окончила факультет информационных систем и технологий УлГТУ по направлению «Прикладная информатика в экономике» и гуманитарный факультет УлГТУ по направлению «Перевод в сфере профессиональной коммуникации»; специалист службы по военно-технической политике ФНПЦ АО «НПО «Марс». Область научных интересов - компьютерная лингвистика, CRM-системы, локализация контента. [e-mail: valeria.avvakumova73@gmail.com]В.С. Аввакумова,

Шеянова Ирина Николаевна, Ульяновский государственный технический университет, магистрант, окончила факультет информационных систем и технологий УлГТУ по направлению «Прикладная информатика в экономике»; инженер технической поддержки ООО «Эквид». Область научных интересов - интеллектуальный анализ данных, классификация и прогнозирование, исследование и построение систем поддержки принятия решений. [e-mail: irene.sheyanova@gmail.com]И.Н. Шеянова

Однокритериальная оптимизация расписания работы экипажа научно-исследовательской подводной лодки000_12.pdf

В настоящей статье рассмотрены основные математические модели и алгоритмы, применяемые для планирования работы экипажа научно-исследовательской подводной лодки (НИПЛ), и представлен обзор существующих методов решения задачи оптимального планирования и составления расписаний. На примере планирования исследовательских рейдов НИПЛ был проведен системный анализ и формализация исходных данных. Авторы описывают математическую постановку задачи составления расписания работы членов экипажа (ЧЭ) НИПЛ в контексте однокритериальной оптимизации с использованием методов целочисленной оптимизации, системного анализа, теории принятия решений, теории расписаний, имитационного моделирования, а также экспертной оценки. В качестве эксперимента авторами представлен модифицированный генетический алгоритм, предлагаемый для дальнейшего использования в качестве одного из основных математических аппаратов системы планирования работы ЧЭ. Кроме того, авторами проведено исследование эффективности предложенного генетического алгоритма. Данная статья может представлять научный и практический интерес для специалистов крупных военных и научно-исследовательских предприятий, занимающихся планированием работы членов экипажа таких сложных объектов, как, например, самолет, космический корабль, подводная лодка или глубоководный водолазный комплекс.

Научно-исследовательская подводная лодка, генетические алгоритмы, теория расписаний, кроссинговер, «жадная» стратегия.

2016_ 3

Рубрика: Информационные системы

Тематика: Информационные системы, Автоматизированные системы управления , Математическое моделирование, Архитектура корабельных систем .


УДК 621.391.037.3

Тамразян Георгий Михайлович, ФНПЦ АО «НПО «Марс», аспирант кафедры «Телекоммуникации» Ульяновского государственного технического университета. Инженер-исследователь ФНПЦ АО «НПО «Марс». Имеет статьи и изобретения в области помехоустойчивого кодирования. [e-mail: mars@mv.ru]Г.М. Тамразян

Современные методы адаптивного помехоустойчивого кодирования000_6.pdf

В данной работе предлагаются оптимальные алгоритмы декодирования избыточных кодов с перестраиваемыми параметрами на примере кодов Рида-Соломона (РС).Наиболее сложной и ресурсоемкой операцией при декодировании кодов РС является расчет полинома локаторов ошибки. Как правило, он осуществляется с помощью алгоритма iBM, который, однако, имеет такой недостаток, как сложная и нерегулярная структура. Попытки реализации данного алгоритма с динамически перестраиваемыми параметрами для адаптивных кодеков приводят к значительному усложнению декодера и увеличению времени прохождения критического пути.Временные издержки при поиске полинома локаторов ошибки можно сократить за счет использования конвейерных и параллельных вычислений, а также приведения алгоритма по поиску полинома локаторов ошибки к регулярному виду. При грамотной компоновке решающих устройств и определенной модификации алгоритма iBM длину критического пути возможно сократить и ускорить его выполнение, а регулярная структура такого алгоритма делает возможным его использование в адаптивных системах. Регулярность структуры декодера достигается за счет приведения к общему виду блоков вычисления полинома локаторов ошибок и решения ключевого уравнения. В данной работе представлен способ формирования таких блоков и их использование в адаптивных системах кодирования.

Коды рида-соломона (рс), коды боуза-чоудхури-хоквингема (бчх), алгоритм берлекемпа-месси (бма), мягкое декодирование.

2016_ 2

Рубрика: Математическое моделирование

Тематика: Математическое моделирование, Архитектура корабельных систем .


УДК 621.391.037

Шагарова Анна Александровна, Ульяновский институт гражданской авиации им. главного маршала авиации Б.П. Бугаева, г. Ульяновск, старший преподаватель кафедры «Общепрофессиональные дисциплины» Ульяновского института гражданской авиации им. главного маршала авиации Б.П. Бугаева, г. Ульяновск. Имеет публикации в области разнесенного приема сигналов в сетях беспроводной передачи информации. [e-mail: Nutka82@list.ru]А.А. Шагарова

Методы повышения эффективности авиационной цифровой радиосвязи декаметрового диапазона000_7.pdf

В авиационной электросвязи широко используется декаметровый диапазон для решения многообразных задач, связанных с обеспечением целевых функций воздушных судов при взаимодействии их между собой и с наземными средствами. Учитывая особенности указанного диапазона волн и в связи с широким развитием цифровых методов обмена данными, возникает задача обеспечения заданной их достоверности. Решение может быть найдено только на пути комплексного использования средств защиты данных.В работе рассматривается принцип применения иерархической модуляции для передачи комбинаций помехоустойчивых кодов, обработка которых на приемной стороне осуществляется методом кластеризации. Это обеспечивает реализацию списочного декодирования принятого кодового вектора с использованием единственного списка, что снижает сложность реализации декодера. Метод эффективен только при правильном восстановлении номера кластера. Именно разряды номера кластера передаются в системе иерархической модуляции с использованием наиболее разнесенных точек сигнальных созвездий. Дается оценка полученных вероятностных характеристик системы.

Сигнально-кодовая конструкция, иерархическая модуляция, кластер, списочное декодирование.

2016_ 2

Рубрика: Математическое моделирование

Тематика: Математическое моделирование, Автоматизированные системы управления , Архитектура корабельных систем .


УДК 681.586’325

Моисеев Владимир Николаевич, ФНПЦ АО «НПО «Марс», кандидат технических наук, окончил экономико-математический факультет Ульяновского государственного технического университета. Инженер-программист 2 категории научно-исследовательской лаборатории ФНПЦ АО «НПО «Марс». Имеет статьи, изобретения в области средств автоматизации управления военно-морской и авиационной техникой. [e-mail: v.n.moiseev@mail.ru]В.Н. Моисеев,

Сорокин Михаил Юрьевич, АО «УКБП», кандидат технических наук, окончил факультет информационных систем и технологий УлГТУ. Начальник отдела АО «УКБП». Имеет статьи, изобретения в области зондовых средств восприятия давлений аэрометрических систем летательных аппаратов. [e-mail: rto@ukbp.ru]М.Ю. Сорокин,

Ефимов Иван Петрович, Ульяновский государственный технический университет, кандидат технических наук, окончил Ульяновский политехнический институт по специальности «Авиаприборостроение». Доцент кафедры «Измерительно-вычислительные комплексы» УлГТУ. Имеет статьи, изобретения в области первичных преобразователей давления аэрометрических систем летательных аппаратов. [e-mail: eip@ulstu.ru]И.П. Ефимов,

Давыдова Татьяна Ивановна, ФНПЦ АО «НПО «Марс», кандидат технических наук, окончила радиотехнический факультет УлГТУ. Ведущий инженер-конструктор ФНПЦ АО «НПО «Марс». Имеет статьи в области системного анализа и обработки информации. [e-mail: tasha_dav@inbox.ru]Т.И. Давыдова

Математическая модель проточного приемника статического давления000_8.pdf

В данной статье рассматриваются вопросы построения математических моделей проточных приемников статического давления (ПСД), предназначенных для восприятия статического давления на вертолетах в диапазоне скоростей полета до 250…350 км/ч, состоящих из конфузорной (сужающейся) и диффузорной (расширяющейся) частей. Разработана математическая модель проточного ПСД по результатам экспериментальных исследований для определения статического давления, динамического давления, скорости, погрешности скорости, погрешности высоты. Адекватность полученных математических моделей проверяется сравнением с результатами экспериментальных исследований. Построенные модели позволяют получить достоверные данные при углах сужения конфузора от 30 до 70 град, углах раскрытия диффузора от 8 до 14 град, коэффициенте диафрагмы от 0,15 до 0,45, скорости набегающего воздушного потока от 20 до 250 км/ч. Рассмотрено влияние отдельных конструктивных элементов (конфузор, диффузор) на коэффициент давления ПСД и соответствие между экспериментальными данными и результатами, полученными с помощью математической модели. Полученные математические модели позволяют автоматизировать процесс разработки приемников с прогнозируемыми метрологическими характеристиками. Появляется возможность оперативно подбирать приемники с требуемыми конструктивными параметрами для конкретного объекта управления на первоначальном этапе разработки.

Математическая модель, проточный приемник статического давления, конфузор, диффузор.

2016_ 2

Рубрика: Математическое моделирование

Тематика: Математическое моделирование, Автоматизированные системы управления .


УДК ДК 004.413.4

Емельянов Александр Алексеевич, ФНПЦ АО «НПО «Марс», кандидат технических наук, окончил Военную академию им. Ф.Э. Дзержинского. Заместитель главного инженера ФНПЦ АО «НПО «Марс» по качеству и инженерно-техническому обеспечению - начальник управления. Имеет публикации в области создания систем менеджмента качества и защиты информации. [e-mail: mars@mv.ru]А.А. Емельянов,

Радионова Юлия Александровна, ФНПЦ АО «НПО «Марс», кандидат технических наук, окончила механико-математический факультет Ульяновского государственного университета, аспирантуру Ульяновского государственного технического университета. Ведущий инженер-программист ФНПЦ АО «НПО «Марс». Имеет публикации в сфере автоматизированных систем документооборота, интеллектуальной организации хранилищ технической документации. [e-mail: julia-owl@mail.ru]Ю.А. Радионова

Модель оценки эффективности решения задачи минимизации рисков контекста организации000_9.pdf

В настоящее время в процессе управления любой организацией появляется проблема принятия решений в условиях неопределенности некоторых параметров ее функционирования - как внешних, так и внутренних. Один из способов решения подобной проблемы - прогнозирование рисков, возникающих в процессе функционирования, и управление ими. Наличие различных методов управления рисками позволяет руководителю организации выбрать из них наиболее подходящий. Для крупного научно-производственного предприятия наиболее подходящим является статистический, основанный на численном анализе большого массива данных и дающий наиболее точные результаты, не зависящие от субъективного мнения экспертов.В работе рассматривается метод имитационного моделирования процесса управления рисками контекста организации и статистический метод минимизации рисков, основанный на использовании аппарата математической статистики. Данный метод позволяет оценить не только уровень риска, но и эффективность мероприятий, разработанных для его минимизации.

Риск-менеджмент, статистический метод, минимизация рисков.

2016_ 2

Рубрика: Математическое моделирование

Тематика: Математическое моделирование, Информационные системы.


УДК 531.36: 534.1

Безгласный Сергей Павлович, Самарский национальный исследовательский университет им. акад. С.П. Королева, кандидат физико-математических наук, доцент кафедры «Теоретическая механика» Самарского национального исследовательского университета им. акад. С.П. Королева. Окончил механико-математический факультет Московского государственного университета им. М.В. Ломоносова. Имеет статьи в областях теоретической механики, теории устойчивости и управления, динамики космических систем. [e-mail: bezglasnsp@rambler.ru]С.П. Безгласный,

Красников Виктор Сергеевич, Самарский национальный исследовательский университет им. акад. С.П. Королева, аспирант кафедры «Теоретическая механика» института ракетно-космической техники Самарского национального исследовательского университета им. акад. С.П. Королева. Окончил факультет Летательных аппаратов СГАУ им. акад. С.П. Королева. Имеет статьи в областях теоретической механики, теории устойчивости и управления. [e-mail: walkthrough@mail.ru]В.С. Красников

Стабилизация программных движений однороторного гиростата с полостью, заполненной вязкой жидкостью000_10.pdf

Исследована задача о построении асимптотически устойчивых программных движений однороторного гиростата, содержащего сферическую полость, целиком заполненную вязкой жидкостью. Гиростат моделируется двумя соединенными твердыми телами с общей осью вращения. Первое тело - носитель - имеет полость, заполненную жидкостью большой вязкости. Второе тело представляет собой динамически симметричный ротор. В работе построены уравнения движения гиростата в виде уравнений Лагранжа второго рода. В уравнениях воздействие жидкости на движение гиростата описывается через кинематические характеристики самого гиростата. Задача о реализации программных движений решена синтезом активных программного и стабилизирующего управлений, приложенных к гиростату. Стабилизирующее управление сконструировано по принципу обратной связи. Задача решена на основе прямого метода Ляпунова теории устойчивости с использованием метода предельных функций и предельных систем. Результаты работы могут быть использованы при проектировании систем управления движущимися объектами, содержащими полость с жидкостью.

Гиростат, вязкая жидкость, программное движение, функция ляпунова, асимптотическая устойчивость.

2016_ 2

Рубрика: Математическое моделирование

Тематика: Математическое моделирование, Архитектура корабельных систем .


УДК 519.872

Анцев Георгий Владимирович, АО «Концерн «Моринсис-Агат», кандидат технических наук, доцент, окончил Ленинградский институт авиационного приборостроения. Генеральный директор - генеральный конструктор АО «Концерн «Моринсис-Агат». Имеет статьи, монографии, изобретения в области сложных информационных радиоэлектронных систем специального и гражданского назначения. [e-mail: gendirector@concern-agat.ru]Г.В. Анцев,

Красников Анатолий Константинович, АО «Концерн «Моринсис-Агат», доктор технических наук, профессор, окончил Московский инженерно-физический институт. Заместитель руководителя научно-методического центра подготовки и переподготовки кадров по научной работе АО «Концерн «Моринсис-Агат». Имеет статьи, монографии, изобретения в области системного анализа и синтеза информационно-управляющих систем специального назначения. [e-mail: cnti@concern-agat.ru]А.К. Красников,

Новиков Евгений Станиславович, АО «Концерн «Моринсис-Агат», доктор технических наук, профессор, окончил Московский инженерно-физический институт. Главный конструктор направления - руководитель научно-методического центра подготовки и переподготовки кадров АО «Концерн «Моринсис-Агат». Имеет статьи, монографии, изобретения в области аппаратного и математического обеспечения информационно-управляющих систем специального назначения. [e-mail: novikov-E.S@concern-agat.ru]Е.С. Новиков

Методологические аспекты проектирования интегрированных систем управления вмф000_1.pdf

Работа посвящена методологическим аспектам создания специального математического обеспечения интегрированных систем управления (ИСУ) для кораблей военно-морского флота РФ [1-3]. С позиций системного анализа рассматривается проблема выработки управляющих решений для слабоструктурированных задач в сложных тактических ситуациях [4-7]. Обосновывается целесообразность разработки специальных математических моделей для анализа проблемных ситуаций, на основе разбора которых в дальнейшем появляется возможность более четко формулировать проблему выработки оптимальных (рациональных) управляющих решений. Приводятся примеры использования аналитических моделей предсказательного моделирования боевого противоборства при оценке качества ИСУ. Рассмотрены основные принципы и этапы методологии конструирования математических моделей слабоструктурированных задач, представляющих практический интерес. Предложены подходы к выбору системы критериев и показателей оценивания качества ИСУ. В работе используются методы: системного анализа, исследования операций, принятия решений, систем массового обслуживания, современных систем компьютерной математики.

Методология, интегрированная система управления, математическая модель, система массового обслуживания, системный анализ.

2016_ 2

Рубрика: Автоматизированные системы управления

Тематика: Автоматизированные системы управления, Математическое моделирование, Архитектура корабельных систем , Исследование операций и принятие решений.


УДК 623.5

Масленникова Татьяна Николаевна, ФНПЦ АО «НПО «Марс», кандидат технических наук, окончила радиотехнический факультет Ульяновского политехнического института. Начальник научно-исследовательской лаборатории ФНПЦ АО «НПО «Марс». Имеет публикации в области информационного обеспечения автоматизированных систем специального назначения. [e-mail: mars@mv.ru]Т.Н. Масленникова,

Мурашов Алексей Александрович, ФНПЦ АО «НПО «Марс», окончил факультет математики и информационных технологий Ульяновского государственного университета. Математик ФНПЦ АО «НПО «Марс». Имеет публикации в области информационного обеспечения автоматизированных систем. [e-mail: mars@mv.ru]А.А. Мурашов,

Пифтанкин Александр Николаевич, ФНПЦ АО «НПО «Марс», кандидат технических наук, окончил механико-математический факультет УлГУ. Главный специалист ФНПЦ АО «НПО «Марс». Имеет публикации в области автоматизации процессов совокупной обработки радиолокационной информации. [e-mail: mars@mv.ru]А.Н. Пифтанкин

Отождествление информации от пассивных средств локации кораблей соединения000_2.pdf

В данной работе представлена математическая модель задачи отождествления данных от пассивных средств локации и формирования метрической функции, позволяющей оценивать степень тождественности различных объектов на основании опыта работы оператора и алгоритмов автоматического отождествления радиолокационной и радиотехнической информации. При формировании метрической функции использовались методы машинного обучения, в частности метод опорных векторов. Представлены способ и математическая модель решения проблемы неоднозначности отождествления радиотехнической информации на основании полученной метрической функции оценивания степени тождественности различных объектов. Данная математическая модель сведена к математической модели задач линейного программирования и решена стандартными методами. С использованием среды Matlab поставлен вычислительный эксперимент, в рамках которого разработан алгоритм отождествления радиотехнических объектов. По данным, полученным в вычислительном эксперименте, произведены уточнения алгоритма и получен положительный результат использования модели.

Пассивные средства локации, отождествление информации, мера тождественности объектов, метод машинного обучения.

2016_ 2

Рубрика: Автоматизированные системы управления

Тематика: Автоматизированные системы управления, Математическое моделирование, Архитектура корабельных систем .


УДК 621.396.96

Васильев Константин Константинович, Ульяновский государственный технический университет, доктор технических наук, профессор, заслуженный деятель науки и техники РФ, член-корреспондент АН республики Татарстан. Окончил радиотехнический факультет и аспирантуру Ленинградского электротехнического института им. В.И. Ульянова (Ленина). Заведующий кафедрой «Телекоммуникации» Ульяновского государственного технического университета. Имеет монографии, учебные пособия и статьи в области статистического синтеза и анализа информационных систем. [e-mail: vkk@ulstu.ru]К.К. Васильев,

Павлыгин Эдуард Дмитриевич, ФНПЦ АО «НПО «Марс», кандидат технических наук. Окончил радиотехнический факультет Ульяновского политехнического института. Первый заместитель генерального директора по науке ФНПЦ АО «НПО «Марс». Имеет статьи в области статистических методов обработки сигналов. [e-mail: mars@mv.ru]Э.Д. Павлыгин,

Гуторов Александр Сергеевич, ФНПЦ АО «НПО «Марс», окончил радиотехнический факультет УлГТУ, аспирант УлГТУ. Главный конструктор ФНПЦ АО «НПО «Марс». Имеет статьи в области статистических методов обработки сигналов. [e-mail: gutorov_as@mail.ru]А.С. Гуторов

Построение траекторий маневрирующих целей на основе сплайнов и фильтра калмана000_8.pdf

Рассмотрены алгоритмы сопровождения радиолокационных целей на основе применения алгоритмов калмановской фильтрации и сглаживающих сплайнов, позволяющих производить оценку параметров движения в отсутствии точной информации о динамической модели. Проведен сравнительный анализ эффективности алгоритмов при различных видах траекторий. Установлено, что при интенсивном маневрировании и достаточно точных первичных измерениях алгоритмы на основе сплайнов - апроксимации кривой с использованием сплайн-функций - имеют небольшие погрешности, просты для программной реализации и требуют немного вычислительных ресурсов. Вместе с тем, для плавно изменяющихся траекторий с известными статистическими характеристиками предпочтение следует отдавать калмановским методам - рекурсивным фильтрам, оценивающим вектор состояния динамической системы. В условиях неопределенности относительно динамических характеристик цели предложено использовать многомодельные многовариантные процедуры построения траекторий. На основе имитации радиолокационной обстановки получены экспериментальные результаты, позволяющие подтвердить работоспособность и эффективность разработанных алгоритмов и программного обеспечения.

Радиолокация, обнаружение, различение, оценивание, фильтрация, сплайн, имитационное моделирование.

2016_ 1

Рубрика: Математическое моделирование

Тематика: Математическое моделирование, Системы автоматизации проектирования , Архитектура корабельных систем .


© ФНПЦ АО "НПО "Марс", 2009-2017 Работает на Joomla!