ISSN 1991-2927
 

АПУ № 3 (49) 2017

Рубрика: "МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ"

УДК 519.7

Иванцов Андрей Михайлович, Ульяновский государственный университет, кандидат технических наук, доцент, окончил Ленинградское высшее военное инженерное училище связи, Военную академию связи, очную адъюнктуру Высшей Академии Связи. Доцент кафедры «Информационная безопасность и теория управления» Ульяновского государственного университета. Имеет статьи, учебные пособия в области защиты информации. [e-mail: iwanzow@mail.ru]А.М. Иванцов,

Рацеев Сергей Михайлович, Ульяновский государственный университет, доктор физико-математических наук, доцент, окончил механикоматематический факультета УлГУ. Профессор кафедры «Информационная безопасность и теория управления» УлГУ. Имеет статьи, учебные пособия в области криптографических методов защиты информации, PI-алгебр. [e-mail: ratseevsm@mail.ru]С.М. Рацеев

О применении эллиптических кривых в некоторых проверяемых схемах разделения секрета000_4.pdf

Пороговая схема разделения секрета - схема разделения секрета с n участниками для структуры доступа, в которой правомочными являются все коалиции, содержащие не менее t участников для некоторого t, а все коалиции с меньшим числом участников - неправомочны. Особую роль играют совершенные схемы разделения секрета - схемы, в которых доли секрета любой неправомочной коалиции не позволяют получить никакой информации о значении секрета. Одной из хорошо известных совершенных схем разделения секрета является схема шамира. В схеме шамира нечестный дилер может раздать участникам несовместные доли, из которых они никогда не восстановят исходный секрет. В данном случае применяются проверяемые схемы разделения секрета - схемы, позволяющие каждому участнику проверить совместимость своей доли с долями секрета остальных участников. Для этого помимо доли секрета каждому участнику передается некоторая дополнительная информация, позволяющая проверить выданную долю секрета. Хорошо известными проверяемыми схемами являются схема Фельдмана-шамира и схема Педерсена-шамира, последняя из которых обладает свойством совершенности. В данной работе приводятся модификации схем Фельдмана-шамира и Педерсона-шамира на эллиптических кривых, применение которых позволяет значительно уменьшить размеры параметров протоколов и увеличить их криптографическую стойкость.

Схема разделения секрета, схема шамира, эллиптическая кривая.

2017_ 3

Рубрика: Математическое моделирование

Тематика: Математическое моделирование, Автоматизированные системы управления .


УДК 628.932

Харькин Дмитрий Владимирович, АО «УКБП», окончил Факультет информационных систем и технологий Ульяновского государственного технического университета. Аспирант кафедры «Измерительновычислительные комплексы» УлГТУ. Начальник научно-исследовательского отдела АО «УКБП». Имеет статьи по светотехнической тематике. [e-mail: hardim@mail.ru]Д.В. Харькин,

Ефимов Иван Петрович, Ульяновский государственный технический университет, кандидат технических наук, окончил Ульяновский политехнический институт по специальности «Авиаприборостроение». Доцент кафедры «Измерительно-вычислительные комплексы» УлГТУ. Имеет статьи, изобретения в области первичных преобразователей давления аэрометрических систем летательных аппаратов. [e-mail: eip@ulstu.ru]И.П. Ефимов

Математическая модель и метод построения модуля подсвета жидкокристаллических панелей на базе цветных светодиодов000_5.pdf

В статье рассматриваются вопросы построения модуля подсвета жидкокристаллических панелей на базе цветных RGB-светодиодов. Приведены алгоритмы управления светодиодами для обеспечения требуемых светотехнических характеристик жидкокристаллических модулей. Адекватность полученных алгоритмов проверена с помощью экспериментальных исследований. рассмотрено влияние отдельных характеристик светодиодов и конструктивных элементов на коэффициент полезного действия подсвета. Полученные математические модели и алгоритмы позволяют автоматизировать процесс разработки светодиодных подсветов с прогнозируемыми светотехническими характеристиками. Появляется возможность оперативно подобрать элементы с требуемыми конструктивными параметрами для конкретного светодиодного подсвета на первоначальном этапе разработки.

Математическая модель, светодиодный подсвет, рассеиватель, алгоритм управления.

2017_ 3

Рубрика: Математическое моделирование

Тематика: Математическое моделирование, Автоматизированные системы управления .


УДК 621.1.016+532.526

Ковальногов Владислав Николаевич, Ульяновский государственный технический университет, доктор технических наук, заведующий кафедрой «Тепловая и топливная энергетика» Ульяновского государственного технического университета, окончил Казанский государственный университет. Имеет статьи, монографии и изобретения в области моделирования, исследования и оптимизации тепловых и гидрогазодинамических процессов в энергоустановках и технологическом оборудовании. [e-mail: kvn@ulstu.ru]В.Н. Ковальногов,

Генералов Дмитрий Александрович, Ульяновский государственный технический университет , старший преподаватель кафедры «Тепловая и топливная энергетика» УлГТУ, окончил УлГТУ. Имеет статьи и изобретения в области численного моделирования гидрогазодинамических процессов. [e-mail: dmgeneralov@mail.ru]Д.А. Генералов,

Чукалин Андрей Валентинович, Ульяновский государственный технический университет , аспирант кафедры «Тепловая и топливная энергетика» УлГТУ, окончил УлГТУ. Имеет статьи в области численного моделирования гидрогазодинамических процессов. [e-mail: chukalin.andrej@mail.ru]А.В. Чукалин,

Федоров Руслан Владимирович, Ульяновский государственный технический университет , кандидат технических наук, доцент кафедры «Тепловая и топливная энергетика» УлГТУ, окончил УлГТУ. Имеет статьи, монографии и изобретения в области численного моделирования гидрогазодинамических процессов. [e-mail: r.fedorov@ulstu.ru]Р.В. Федоров,

Плеханова Анна Алексеевна, Ульяновский государственный технический университет , студентка 4 курса направления «Теплоэнергетика и теплотехника» энергетического факультета УлГТУ. Имеет статьи в области численного моделирования гидрогазодинамических процессов. [e-mail: nyutka73@mail.ru]А.А. Плеханова

Новые технические решения на основе математического моделирования лопаточного аппарата турбомашин000_6.pdf

Приведены способ исследования теплового состояния лопаток турбомашин, методика численного исследования с учетом феномена газодинамической температурной стратификации. рассматриваются возможность повышения эффективности охлаждения турбинных лопаток благодаря использованию феномена газодинамической температурной стратификации, возможность повышения точности расчетного прогнозирования теплового состояния лопаток за счет получения достоверных данных путем разработки математической модели и уникального программноинформационного комплекса для моделирования.

Математическое моделирование, численные методы, тепловая защита, пленочное охлаждение, программно-информационный комплекс, дисперсный поток.

2017_ 3

Рубрика: Математическое моделирование

Тематика: Математическое моделирование.


УДК 621.396.969: 623.618.3

Павлыгин Эдуард Дмитриевич, ФНПЦ АО «НПО «Марс», кандидат технических наук, окончил радиотехнический факультет Ульяновского политехнического института, первый заместитель генерального директора по науке ФНПЦ АО «НПО «Марс». Имеет статьи в области статистических методов обработки сигналов. [e-mail: mars@mv.ru]Э.Д. Павлыгин,

Жданов Александр Васильевич, ФНПЦ АО «НПО «Марс», окончил факультет «Боевые управляющие системы» Высшего военно-морского училища радиоэлектроники им. А.С. Попова, заместитель генерального директора по науке ФНПЦ АО «НПО «Марс». Имеет статьи в области синтеза и анализа информационных систем. [e-mail: mars@mv.ru]А.В. Жданов,

Маслов Александр Алексеевич, ФНПЦ АО «НПО «Марс», окончил факультет вычислительной техники Московского инженерно-физического института, главный конструктор ФНПЦ АО «НПО «Марс». Имеет статьи в области статистических методов обработки сигналов. [e-mail: mars@mv.ru]А.А. Маслов

Особенности реализации и организации совместной работы многопозиционной радиолокационной системы000_1.pdf

В статье рассмотрены особенности реализации и организации работы многопозиционной радиолокационной системы (МПРЛС). Приведена структура МПРЛС и рассмотрена совместная работа многофункциональных интегрированных радиолокационных комплексов (МФИРЛК) в многопозиционном режиме, режиме обеспечения электомагнитной совместимости и защите от противокорабельных ракет. рассмотрено решение задачи по временной и пространственной синхронизациям МПРЛС, в том числе и введения единого оперативного времени, произведена оценка точности синхронизации при совместной работе мфирлк. рассмотрены особенности работы МФирлк в активном и пассивном синхронных режимах. Приведены формулы для расчета углов положения луча пассивной (приемной) и активной фазированной антенной решетки МФИРЛК. рассмотрены вопросы и приведены формулы для расчета углов расхождения курсовых систем и повышения точности измерения угловых координат целей. Приведены требования к сети обмена данными между абонентами мпрлс.

Многопозиционная радиолокация, временная и пространственная синхронизации, форма ведения единого оперативного времени, требования к сети обмена данными, совместное управление.

2017_ 3

Рубрика: Автоматизированные системы управления

Тематика: Автоматизированные системы управления, Математическое моделирование, Архитектура корабельных систем .


УДК 629.7.015

Гребёнкин Александр Витальевич, Ульяновский институт гражданской авиации им. главного маршала авиации Б.П. Бугаева, доктор технических наук, профессор кафедры летной эксплуатации и безопасности полетов, окончил Рижский Краснознаменный институт инженеров гражданской авиации им. Ленинского комсомола. Имеет статьи изобретения в области обеспечения безопасности полетов и автоматического управления полетом и тягой самолета [e-mail: grebenkin58@mail.ru]А.В. Гребёнкин,

Лушников Александр Александрович, ФНПЦ АО «НПО «Марс», аспирант Ульяновского института гражданской авиации им. главного маршала авиации Б.П. Бугаева, закончил радиотехнический факультет Ульяновского государственного технического университета. Заместитель главного конструктора ФНПЦ АО «НПО «Марс». [e-mail: a.lushnikov@mail.ru]А.А. Лушников,

Моисеев Владимир Николаевич, ФНПЦ АО «НПО «Марс», кандидат технических наук, окончил экономико-математический факультет УлГТУ. Инженер-программист 1 категории научно-исследовательской лаборатории ФНПЦ АО «НПО «Марс». Имеет статьи, изобретения в области средств автоматизации управления военноморской и авиационной техникой. [e-mail: v.n.moiseev@mail.ru]В.Н. Моисеев

Адаптивная стабилизация и отслеживание заданной высоты и скорости полёта000_2.pdf

В данной статье рассматриваются вопросы построения модели использования вспомогательных сигналов системы автоматического управления (сАУ) полетом и тягой двигателей самолета на секции интерцепторов (управление подъёмной силой и силой лобового сопротивления) совместно с управляющими сигналами на руль высоты и управлением тягой двигателей от пилота или сАУ. Для исследования в программе MATLAB пакете Simulink создана имитационная модель формирования управляющего сигнала на руль высоты и на секции интерцепторов самолета для определения параметров управляющих поверхностей. Построенные модели позволяют получить данные влияния адаптивного способа управления скоростью полета на параметры отслеживания и стабилизации заданной приборной скорости самолета в условиях сдвига ветра, в режимах торможения в горизонтальном полете, стабилизации заданной высоты полета в сравнении с использованием и без использования дополнительного сигнала на интерцепторы. Полученная модель позволяет оперативно подбирать требуемые параметры для конкретного объекта управления на первоначальном этапе разработки.

Адаптивная стабилизация, автомат тяги, руль высоты.

2017_ 3

Рубрика: Автоматизированные системы управления

Тематика: Автоматизированные системы управления, Математическое моделирование.


УДК 681.518.3

Сергеев Вячеслав Андреевич, Ульяновский филиал Института радиотехники и электроники им. В.А. Котельникова Российской академии наук, доктор технических наук, доцент, окончил физический факультет Горьковского государственного университета им. Н.И. Лобачевского. Директор Ульяновского филиала Института радиотехники и электроники им. В.А. Котельникова Российской академии наук, заведующий базовой кафедрой «Радиотехника, опто- и наноэлектроника» Ульяновского государственного технического университета. Имеет монографии, статьи и изобретения в области исследования характеристик полупроводниковых приборов и интегральных схем, измерения их тепловых параметров. [e-mail: sva@ulstu.ru]В.А. Сергеев,

Куликов Александр Александрович, Ульяновский филиал Института радиотехники и электроники им. В.А. Котельникова Российской академии наук, окончил радиотехнический факультет УлГТУ. Ведущий инженер УФИРЭ им. В.А. Котельникова РАН, аспирант базовой кафедры «Радиотехника, опто- и наноэлектроника» УлГТУ. Имеет публикации в области разработки автоматизированных средств измерения параметров полупроводниковых приборов. [e-mail: ufire@mv.ru]А.А. Куликов,

Тарасов Руслан Геннадьевич, АО «НПП «Завод Искра», окончил Ульяновское высшее военное инженерное училище связи. Директор АО «НПП «Завод Искра», соискатель базовой кафедры «Радиотехника, опто- и наноэлектроника» УлГТУ. Имеет публикации в области разработки методов и средств измерения параметров и контроля качества изделий радиоэлектроники. [e-mail: rgtarasov@mail.ru]Р.Г. Тарасов,

Тетенькин Ярослав Геннадьевич, Ульяновское конструкторское бюро приборостроения, кандидат технических наук, окончил радиотехнический факультет УлГТУ. Введущий инженер Ульяновского конструкторского бюро приборостроения. Имеет научные публикации и изобретения в области автоматизации измерений и исследования характеристик полупроводниковых приборов и интегральных схем, измерения их тепловых параметров. [e-mail: a732041@yandex.ru]Я.Г. Тетенькин

Установка для измерения напряжения шнурования тока в структурах мощных вч- и свч-транзисторов000_13.pdf

Представлен краткий обзор известных способов и средств измерения напряжения шнурования тока в структурах мощных ВЧ- и сВЧ-биполярных и гетеробиполярных транзисторов (Мбт) в активном режиме включения. Показано, что для приборов, работающих в квазинепрерывном режиме, эффективными являются способы, основанные на измерении крутизны зависимости U ЭБ )напряжения на эмиттерном переходе от коллекторного напряжения. ( U КБ Описана установка для измерения напряжения шнурования тока в Мбт, принцип работы которой основан на измерении амплитуды переменной составляющей напряжения Ũ Э Б на эмиттерном переходе Мбт при пропускании через транзистор постоянного эмиттерного тока и подаче на коллектор суммы линейно нарастающего и малого переменного напряжения. шнурование тока в транзисторной структуре проявляется в резком возрастании крутизны зависимости Ũ Э Б ). Описан алгоритм косвенного определения напряжения локализации тока в транзисторной ( U КБ структуре по измеренным значениям на начальном участке указанных зависимостей без попадания контролируемого Мбт в режим «горячего пятна».

Мощные вч- и свч-транзисторы, теплоэлектрическая неустойчивость, напряжение шнурования тока, установка, измерение.

2017_ 3

Рубрика: Электротехника и электронные устройства

Тематика: Электротехника и электронные устройства, Математическое моделирование.


УДК 004.421.5

Смагин Алексей Аркадьевич, Ульяновский государственный университет , доктор технических наук, профессор, окончил радиотехнический факультет Ульяновского политехнического института. Заведующий кафедрой «Телекоммуникационные технологии и сети» Ульяновского государственного университета. Имеет статьи, изобретения, монографии в области разработки информационных систем различного назначения. [e-mail: smaginaa1@mail.ru]А.А. Смагин,

Клочков Андрей Евгеньевич, Ульяновский государственный университет , окончил факультет математики и информационных технологий УлГУ, старший преподаватель кафедры «Информационная безопасность и теория управления» УлГУ. Имеет опыт работы в области защиты информации от утечки по техническим каналам связи. [e-mail: ak@ulsu.ru]А.Е. Клочков,

Григорьев Александр Юрьевич, Ульяновский государственный университет , окончил факультет математики и информационных технологий УлГУ, аспирант кафедры «Телекоммуникационные технологии и сети» УлГУ. Инженер-программист ФНПЦ АО «НПО «Марс». Имеет работы в области статистического тестирования случайных последовательностей. [e-mail: als73@mail.ru]А.Ю. Григорьев

Исследование возможности использования датчиков мобильных устройств для генерации случайных последовательностей000_14.pdf

В настоящей работе исследуется возможность применения датчиков положения в пространстве для генерации случайных последовательностей бит, применяемых в криптографии. В работе для создания аппаратного генератора используются датчики акселерометр и гироскоп, установленные на трёх мобильных устройствах. источником случайности является постоянное изменение показаний датчиков за счёт перемещения устройства в пространстве, его незначительных колебаний и вибраций в процессе эксплуатации. Предлагаются способы обработки показаний датчиков для формирования последовательностей бит. рассмотрены этапы тестирования и критерий подтверждения случайности. тестирование последовательностей на случайность проводится с помощью различных статистических тестов, входящих в программный пакет NIST STS. В статье приводятся экспериментальные результаты тестирования датчиков (акселерометр и гироскоп) трёх мобильных устройств.

Акселерометр, гироскоп, генератор случайных чисел, статистические тесты.

2017_ 3

Рубрика: Электротехника и электронные устройства

Тематика: Электротехника и электронные устройства, Математическое моделирование.


УДК 621.377

Иванов Александр Куприянович, ФНПЦ АО «НПО «Марс», доктор технических наук, окончил физический факультет Иркутского государственного университета, аспирантуру Московского высшего технического училища им. Н.Э. Баумана, докторантуру Ульяновского государственного технического университета. Главный научный сотрудник ФНПЦ АО «НПО «Марс». Имеет монографии, учебное пособие, статьи в области математического моделирования иерархических АСУ реального времени. [e-mail: mars@mv.ru]А.К. Иванов

Математические модели управления знаниями в проектных организациях000_2.pdf

Рассмотрены проблемы управления знаниями в организации, занимающейся проектированием автоматизированных систем. Знания определены как информация, используемая в производственном процессе. Показано, что ключевым моментом преобразования информации в знания является наличие формализованных моделей или неформализованных способов получения проектных решений. Приведены примеры знаний, используемых в организации для проектирования автоматизированных систем управления с применением соответствующих моделей. Построены математические модели последовательного преобразования данных в информацию, информации в знания и знаний в проектные решения в виде линейных систем дифференциальных уравнений и нелинейных систем Лотки и Вольтерра. Учитывались варианты поступления данных из внешних и внутренних источников, а также устаревание данных, информации и знаний. Для линейных систем получены аналитические решения, для нелинейных систем проведены исследования устойчивости методом Ляпунова и определен характер особых точек. Установлены основные направления развития системы управления знаниями с целью повышения конкурентоспособности разрабатываемых изделий.

Проектные организации, автоматизированные системы, управление знаниями, математические модели.

2017_ 2

Рубрика: Математическое моделирование

Тематика: Математическое моделирование, Автоматизированные системы управления .


УДК 621.396

Самойленко Марина Витальевна, Московский авиационный институт , кандидат технических наук, окончила Московский авиационный институт и Московский физико-технический институт. Доцент Московского авиационного института (национального исследовательского университета). Занимается томографическим подходом в обработке сигналов, имеет 11 патентов на изобретения, 2 монографии и 9 статей. [e-mail: Samoi.Mar@mail.ru]М.В. Самойленко

Томографический метод восстановления сигнала после прохождения через фильтр с известной характеристикой000_3.pdf

Предложен метод восстановления входного сигнала фильтра по измеренному выходному сигналу и импульсной характеристике фильтра. Известным методом решения задачи восстановления входного сигнала является метод инверсной фильтрации. Однако этот метод с неизбежностью искажает восстанавливаемый сигнал либо за счёт эффекта просачивания мощности в соседние области частот при протяженном сигнале, либо за счёт невозможности вычислить бесконечный спектр входного сигнала посредством деления спектра выходного сигнала на передаточную функцию. Предлагаемый метод реализуется без перехода в частотную область. Он основан на томографическом подходе в обработке сигналов, развиваемом автором. Согласно этому подходу, решение ищется с позиции восстановления искомой функции (входного сигнала) по множеству значений её интегралов, полученных при различающихся условиях интегрирования. В качестве таких значений используются значения выходного сигнала, измеренные в дискретные моменты времени. Множество выходных сигналов (интегралов) составляют отображение, по которому восстанавливается оригинал - входной сигнал. Полученные математические выражения позволяют восстановить его расчетным путем в дискретизированной форме, в виде вектора. При этом матрица восстановления, используемая в расчетах, формируется по дискретным значениям импульсной характеристики фильтра и может быть вычислена заранее, после чего в оперативном режиме останется провести измерения выходного сигнала и составленный из них вектор умножить на заранее вычисленную матрицу. Шаг дискретизации определяется априори и может меняться с целью повышения точности восстановления или уменьшения времени обработки. Томографический метод позволяет восстанавливать как непрерывные сигналы, так и одиночные импульсы и импульсные последовательности. Для иллюстрации его работы в статье приведены результаты компьютерного моделирования.

Восстановление сигнала, томографический подход в обработке сигналов, импульсная характеристика, матрица отображения, матрица восстановления.

2017_ 2

Рубрика: Математическое моделирование

Тематика: Математическое моделирование.


УДК 621.391.037.3

Наместников Сергей Михайлович, Ульяновский государственный технический университет, кандидат технических наук, окончил Ульяновский государственный технический университет, доцент кафедры «Телекоммуникации» УлГТУ. Имеет статьи в области статистической обработки сигналов и помехоустойчивого кодирования. [e-mail: sernam@ulstu.ru]С.М. Наместников,

Чилихин Николай Юрьевич, Ульяновский государственный технический университет, кандидат технических наук, окончил УлГТУ, доцент кафедры «Телекоммуникации» УлГТУ. Имеет монографию и статьи в области помехоустойчивого кодирования и защиты информации. [e-mail: n.chilikhin@gmail.com]Н.Ю. Чилихин

Многомерные кодовые конструкции с применением расстояния бхаттачария000_4.pdf

В статье рассматривается применение расстояния Бхаттачария (РБх) в многомерных кодовых конструкциях для управления избыточной составляющей. Предложенный подход является компромиссом между высокими требованиями к пропускной способности и уровню вероятности ошибки на бит. Многомерные кодовые конструкции достаточно эффективно решают задачу исправления ошибок (естественного и антропогенного характера), возникающих в канале связи. Однако увеличение кодового расстояния за счет создания многомерности приводит к значительному уменьшению кодовой скорости и, как следствие, уменьшению информационной пропускной способности. В этом случае РБх является по сути гибким и эффективным инструментом решения поставленной задачи. Простота применения РБх в схеме полярного кодирования делает этот механизм удобным для проектировщика систем связи, а высокие корректирующие способности полярных кодов позволяют использовать их в качестве внутренних кодов для построения схем каскадного кодирования и кодов размерности 3D. РБх активно применяется для определения сходства между двумя и более множествами. В теории кодирования данный инструмент получил широкое применение в вопросе разнесения кодовых комбинаций в евклидовом пространстве и создания механизма управления порождающей матрицей с целью формирования непрерывного множества кодовых сочетаний. Такие сочетания образуют множество информационных символов, которые варьируются в пределах k = {1, n - 1} за исключением отсутствия передачи и безызбыточной передачи.

Адаптивная система, информационно-управляющий комплекс, каскадное кодирование, коды размерности 3d, матрица арикана, мягкие решения символов, мягкое декодирование, обратная связь, помехоустойчивые коды, полярные коды, расстояние бхаттачария, 3d codes.

2017_ 2

Рубрика: Математическое моделирование

Тематика: Математическое моделирование.


УДК 004.7

Стародубцев Юрий Иванович, Военная академия связи им. С.М. Буденного, доктор военных наук, профессор, окончил Кемеровское высшее военное командное училище связи, Военную академию связи им. С.М. Буденного. Заслуженный деятель науки РФ, академик Российской Академии военных наук, Академии безопасности и правопорядка, Российской Академии естественных наук, Арктической академии, почетный работник высшего профессионального образования. Профессор ВАС. Имеет монографии, учебные пособия, статьи и изобретения в области защиты информационного ресурса систем военной связи и АСУ в условиях информационной войны. [e-mail: vas@mail.ru]Ю.И. Стародубцев,

Сухорукова Елена Валерьевна, Военная академия связи им. С.М. Буденного, кандидат технических наук, окончила Новочеркасский военный институт связи, адъюнктуру ВАС им. С.М. Буденного. Преподаватель кафедры «Безопасность информационно-телекоммуникационных систем специального назначения» ВАС им. С.М. Буденного. Имеет статьи и изобретения в области информационной безопасности. [e-mail: sukhorukova_lena@mail.ru]Е.В. Сухорукова,

Корсунский Андрей Сергеевич, ФНПЦ АО «НПО «Марс», кандидат технических наук, окончил факультет радиосвязи Ульяновского филиала Военного университета связи, адъюнктуру ВАС им. С.М. Буденного. Главный специалист ФНПЦ АО «НПО «Марс». Имеет статьи и изобретения в области радиоэлектронной защиты, безопасности связи и информации, а также передачи информации по беспроводным каналам связи информационно-телекоммуникационных систем. [e-mail: aksspb@mail.ru]А.С. Корсунский,

Масленникова Татьяна Николаевна, ФНПЦ АО «НПО «Марс», кандидат технических наук, окончила радиотехнический факультет Ульяновского политехнического института. Начальник научно-исследовательской лаборатории ФНПЦ АО «НПО «Марс». Имеет труды и публикации в области информационного обеспечения автоматизированных систем специального назначения. [e-mail: mars@mv.ru]Т.Н. Масленникова,

Вершенник Алексей Васильевич, Военная академия связи им. С.М. Буденного, [e-mail: alex14121972@mail.ru]А.В. Вершенник

Задача обнаружения несанкционированно установленных радиоэлектронных устройств и способ ее решения000_1.pdf

Современный этап развития российского общества характеризуется существенным возрастанием роли и актуальности проблем обеспечения безопасности во всех сферах жизнедеятельности. Одной из основных задач в этой области становится борьба с промышленным (экономическим) шпионажем, который ведется с целью завоевания рынков сбыта, исключения технологических прорывов конкурентов, срыва переговоров по контрактам, перепродажи фирменных секретов и т. д. Одними из самых распространенных технических средств съема информации являются радиоизлучающие закладные устройства. Однако существующие средства контроля не перекрывают возможностей, заложенных в современных радиозакладных устройствах. В статье рассмотрена задача определения несанкционированно установленных радиоэлектронных устройств систем негласного съема информации, используемых в целях шпионажа, и предложен способ ее решения. Предлагаемый способ относится к области радиомониторинга электронного оборудования в контролируемой зоне и обеспечивает обнаружение сигналов в условиях отсутствия априорных сведений об их параметрах, а также позволяет определить основную частоту работы.

Информационная безопасность, устройства негласного съема информации, радиозакладки.

2017_ 2

Рубрика: Автоматизированные системы управления

Тематика: Автоматизированные системы управления, Математическое моделирование.


УДК 681.2.08, 681.758.6, 681.7.08, 539.1.074, 621.039.743

Трегубов Алексей Викторович, Научно-исследовательский технологический институт им. С.П. Капицы Ульяновского государственного университета, главный инженер Научно-исследовательского технологического института им. С.П. Капицы Ульяновского государственного университета. Окончил инженерно-физический факультет УлГУ. Имеет публикации в области компьютерного моделирования, волоконных датчиков. [e-mail: tregub@ulsu.ru]А.В. Трегубов,

Новиков Сергей Геннадьевич, Научно-исследовательский технологический институт им. С.П. Капицы Ульяновского государственного университета, кандидат технических наук, начальник лаборатории твердотельной электроники НИТИ им. С.П. Капицы УлГУ. Окончил физико-технический факультет филиала Московского государственного университета им. М.В. Ломоносова в г. Ульяновске. Область научных интересов: микроэлектроника, негатроника, оптоэлектроника, полупроводниковые приборы с положительной обратной связью. [e-mail: novikovsg@ulsu.ru]С.Г. Новиков,

Светухин Вячеслав Викторович, Научно-исследовательский технологический институт им. С.П. Капицы Ульяновского государственного университета, доктор физико-математических наук, профессор, ведущий научный сотрудник НИТИ им. С.П. Капицы УлГУ. Окончил физико-технический факультет филиала МГУ им. М.В. Ломоносова в г. Ульяновске. Область научных интересов: дефектообразование в полупроводниках, радиационная физика и технология. Имеет статьи в области физики полупроводников, физического материаловедения. [e-mail: slava@sv.uven.ru]В.В. Светухин,

Алексеев Александр Сергеевич, Научно-исследовательский технологический институт им. С.П. Капицы Ульяновского государственного университета, аспирант УлГУ. Окончил инженерно-физический факультет УлГУ. Стажер-исследователь НИТИ им. С.П. Капицы УлГУ. Область научных интересов: полупроводниковые приборы, оптоэлектроника, микроэлектроника. [e-mail: granik@ya.ru]А.С. Алексеев,

Беринцев Алексей Валентинович, Научно-исследовательский технологический институт им. С.П. Капицы Ульяновского государственного университета, кандидат технических наук. Окончил радиотехнический факультет Ульяновского государственного политехнического института. Инженер НИТИ им. С.П. Капицы УлГУ. Область научных интересов: оптоэлектроника, микроэлектроника, полупроводниковые приборы. Имеет научные публикации и изобретения в области автоматизации измерений и исследования оптоэлектронных приборов. [e-mail: berints@mail.ru]А.В. Беринцев,

Приходько Виктор Владимирович, Научно-исследовательский технологический институт им. С.П. Капицы Ульяновского государственного университета, кандидат физико-математических наук, начальник управления информационных технологий и телекоммуникаций, старший научный сотрудник НИТИ им. С.П. Капицы УлГУ. Окончил физико-математический факультет филиала МГУ им. М.В. Ломоносова в г. Ульяновске. Область научных интересов: физика твердого состояния, оптика, телекоммуникации. [e-mail: vvp@ulsu.ru]В.В. Приходько,

Фомин Александр Николаевич, Научно-исследовательский технологический институт им. С.П. Капицы Ульяновского государственного университета, кандидат технических наук. Окончил физико-математический факультет Ульяновского государственного педагогического университета им. И.Н. Ульянова. Директор НИТИ им. С.П. Капицы УлГУ. Область научных интересов: радиационные технологии. [e-mail: mr.fominan@yandex.ru]А.Н. Фомин,

Муралев Артем Борисович, Научно-исследовательский технологический институт им. С.П. Капицы Ульяновского государственного университета, окончил инженерно-физический факультет УлГУ. Младший научный сотрудник Лаборатории моделирования поведения неорганических материалов НИТИ им. С.П. Капицы УлГУ. Область научных интересов: компьютерное моделирование, радиационная физика и технология. [e-mail: a.b.muralev@yandex.ru]А.Б. Муралев,

Марков Дмитрий Владимирович, АО «Институт реакторных материалов», кандидат технических наук. Окончил физико-технический факультет Уральского политехнического университета. Директор АО «Институт реакторных материалов». Область научных интересов: реакторное материаловедение. [e-mail: irm@irmatom.ru]Д.В. Марков

Комплекс мониторинга состояния сухих хранилищ отработанного ядерного топлива000_8.pdf

Разработан программно-аппаратный комплекс мониторинга состояния сухих хранилищ отработанного ядерного топлива (СХОЯТ), предназначенный для получения данных о пространственном распределении температурных и дозовых полей в помещении хранилища. Программная часть комплекса позволяет проводить математическое моделирование пространства СХОЯТ с учетом активностей топливных сборок и поглощающих характеристик материалов. Аппаратная часть комплекса выполнена на базе волоконных датчиков и используется для верификации результатов расчетов, контроля граничных условий и проверки качества математической модели. Основной отличительной особенностью разработанного комплекса является использование распределенного волоконного датчика температуры на основе эффекта Мандельштама-Бриллюэна и волоконных датчиков мощности дозы на основе сцинтилляторов и спектросмещающих волокон. Все сенсорные элементы датчиков имеют высокую радиационную стойкость и выполнены с использованием специализированных волокон. Разработанный комплекс представляет собой стабильную, отказоустойчивую систему, не требующую постоянного обслуживания.

Волоконно-оптические датчики, дозиметр, температура, система мониторинга.

2017_ 2

Рубрика: Информационные системы

Тематика: Информационные системы, Математическое моделирование.


УДК 681.32

Тюрин Сергей Феофентович, Пермский национальный исследовательский политехнический университет , заслуженный изобретатель Российской Федерации, доктор технических наук, профессор кафедры автоматики и телемеханики Пермского национального исследовательского политехнического университета. Имеет статьи, монографии, изобретения в области отказоустойчивых элементов и устройств вычислительной техники и систем управления. [e-mail: tyurinsergfeo@yandex.ru]С.Ф. Тюрин,

Зарубский Владимир Георгиевич, Пермский институт Федеральной службы исполнения наказаний Российской Федерации, кандидат технических наук, доцент кафедры режима и охраны в уголовно-исполнительной системе Пермского института Федеральной службы исполнения наказаний Российской Федерации. Имеет статьи, монографии в области отказоустойчивых элементов и устройств вычислительной техники и систем управления. [e-mail: volen3030@rambler.ru]В.Г. Зарубский

Функционально-полные толерантные логические элементы, парирующие два и три отказа в каждой транзисторной структуре000_14.pdf

Надежность функционирования систем управления различных технологических процессов напрямую зависит от надежности элементной базы, послужившей основой для её построения. В статье рассматриваются функционально-полные толерантные логические элементы (ФПТЛЭ), входящие в состав программируемых логических интегральных схем (ПЛИС) типа FPGA для высоконадёжных применений и обладающие способностью сохранения исходной функции при отказах двух и трёх транзисторов в каждой транзисторной структуре. Проведен анализ сложности предложенных ФПТЛЭ2, обладающих девятикратной избыточностью и парирующих отказ двух транзисторов в каждой транзисторной структуре, а также ФПТЛЭ3 с шестнадцатикратной избыточностью, парирующих отказ трех транзисторов в каждой транзисторной структуре по сравнению с ФПТЛЭ1, парирующих отказ одного транзистора в каждой транзисторной структуре. Сравниваются ФПТЛЭ1, 2, 3 - FCTLUT1, 2, 3 (Functional Complete Tolerant Look Up Table) по вероятности безотказной работы с троированными структурами логических элементов ПЛИС типа FPGA.

Логический элемент, плис типа fpga, транзистор, функционально-полный толерантный логический элемент - фптлэ, избыточность, вероятность безотказной работы, троирование, расчетверение, девятикратная избыточность, шестнадцатикратная избыточность.

2017_ 2

Рубрика: Электротехника и электронные устройства

Тематика: Электротехника и электронные устройства, Математическое моделирование.


УДК 004.942

Цыганов Андрей Владимирович, Ульяновский государственный педагогический университет им. И.Н. Ульянова, кандидат физико-математических наук, доцент кафедры высшей математики Ульяновского государственного педагогического универ-ситета им. И.Н. Ульянова. Имеет научные публикации, монографии, учебно-методические пособия и свидетельства о регистрации программ. Область научных интересов: метаэвристические и гибридные алгоритмы стохастической и дискретной минимизации. [e-mail: andrew.tsyganov@gmail.com]А.В. Цыганов,

Семушин Иннокентий Васильевич, Ульяновский государственный университет, доктор технических наук, профессор кафедры «Информационные технологии» Ульяновского государственного университета. Имеет монографии, статьи, учебные пособия и патенты на изобретения. Область научных интересов: фильтрация и управление в условиях неопределенности. [e-mail: kentvsem@yandex.ru]И.В. Семушин,

Цыганова Юлия Владимировна, Ульяновский государственный университет, кандидат физико-математических наук, доцент кафедры «Информационные технологии» УлГУ. Имеет научные публикации, монографию, учебно-методические пособия и свидетельства о регистрации программ. Область научных интересов: параметрическая идентификация, адаптивная фильтрация и численно эффективные алгоритмы для стохастических систем. [e-mail: tsyganovajv@gmail.com]Ю.В. Цыганова,

Голубков Алексей Владимирович, Ульяновский государственный педагогический университет им. И.Н. Ульянова, магистрант факультета физико-математического и технологического образования УлГПУ им. И.Н. Ульянова. Имеет научные публикации и свидетельства о регистрации программ. Область научных интересов: математическое моделирование и программирование. [e-mail: kr8589@gmail.com]А.В. Голубков,

Винокуров Станислав Дмитриевич, Ульяновский государственный педагогический университет им. И.Н. Ульянова, аспирант кафедры высшей математики УлГПУ им. И.Н. Ульянова. Имеет научные публикации и свидетельства о регистрации программ. Область научных интересов: математическое моделирование и программирование. [e-mail: phoenixdragonvista@ya.ru]С.Д. Винокуров

Метаэвристические алгоритмы в задаче идентификации параметров математической модели движущегося объекта000_3.pdf

В статье рассмотрены вопросы применения метаэвристических алгоритмов для решения задачи параметрической идентификации математической модели кругового движения объекта при повороте влево/вправо. Неизвестным параметром, подлежащим идентификации, является радиус кругового движения. Предложены алгоритмы параметрической идентификации, основанные на численной минимизации критерия идентификации с помощью метода имитации отжига и генетического алгоритма. В качестве критерия идентификации выбрана логарифмическая функция правдоподобия. Проведены численные эксперименты для сравнения вычислительных свойств предложенных алгоритмов.

Стохастические линейные системы, параметрическая идентификация, адаптивная фильтрация, метаэвристические алгоритмы.

2017_ 1

Рубрика: Математическое моделирование

Тематика: Математическое моделирование, Архитектура корабельных систем .


УДК 621.1.016+532.526

Ковальногов Владислав Николаевич, Ульяновский государственный технический университет, доктор технических наук, заведующий кафедрой «Тепловая и топливная энергетика» Ульяновского государственного технического университета, окончил Казанский государственный университет. Имеет статьи, монографии и изобретения в области моделирования, исследования и оптимизации тепловых и гидрогазодинамических процессов в энергоустановках и технологическом оборудовании. [e-mail: kvn@ulstu.ru]В.Н. Ковальногов,

Чукалин Андрей Валентинович, Ульяновский государственный технический университет, аспирант кафедры «Тепловая и топливная энергетика» УлГТУ, окончил УлГТУ. Имеет статьи в области численного моделирования гидрогазодинамических процессов. [e-mail: chukalin.andrej@mail.ru]А.В. Чукалин,

Хахалева Лариса Валерьевна, Ульяновский государственный технический университет, кандидат технических наук, доцент кафедры «Тепловая и топливная энергетика» УлГТУ, окончила УлГТУ. Имеет статьи и изобретения в области численного моделирования гидрогазодинамических процессов. [e-mail: larvall@mail.ru]Л.В. Хахалева,

Федоров Руслан Владимирович, Ульяновский государственный технический университет, кандидат технических наук, доцент кафедры «Тепловая и топливная энергетика» УлГТУ, окончил УлГТУ. Имеет статьи, монографии и изобретения в области численного моделирования гидрогазодинамических процессов. [e-mail: r.fedorov@ulstu.ru]Р.В. Федоров,

Плеханова Анна Алексеевна, Ульяновский государственный технический университет, студентка 3 курса направления «Теплоэнергетика и теплотехника» энергетического факультета УлГТУ [e-mail: nyutka73@mail.ru]А.А. Плеханова

Исследование влияния количества демпфирующих полостей на сопротивление трения турбулентного потока000_5.pdf

В результате экспериментального и численного исследования турбулентного потока с воздействиями на основе модифицированной модели пути смешения Прандтля с использованием анализа пульсаций давления, произведен расчет структуры и сопротивления трения турбулентного потока. разработанные модель турбулентного обмена и метод расчета позволяют адекватно учесть особенности обменных процессов при наличии демпфирующих полостей и прогнозировать сопротивление трения с помощью предварительного расчета. Экспериментально установлена возможность снижения коэффициента сопротивления трения турбулентного потока с помощью демпфирующих полостей до 35%. Выполнено обобщение влияния количества демпфирующих полостей на сопротивление трения.

Демпфирующие полости, математическое моделирование, сопротивление трения, турбулентный поток.

2017_ 1

Рубрика: Математическое моделирование

Тематика: Математическое моделирование, Системы автоматизации проектирования .


УДК 531.1; 531.66; 004.942

Манжосов Владимир Кузьмич, Ульяновский государственный технический университет, доктор технических наук, профессор, окончил машиностроительный факультет Фрунзенского политехнического института, профессор кафедры «Теоретическая и прикладная механика и строительные конструкции» Ульяновского государственного технического университета. Имеет статьи, монографии, изобретения в области динамики машин, моделирования процессов удара. [e-mail: v.manjosov@ulstu.ru]В.К. Манжосов,

Рожков Артем Юрьевич, Ульяновский государственный технический университет, аспирант, окончил факультет информационных систем и технологий УлГТУ. Имеет статьи в области моделирования процессов удара. [e-mail: tpm@ulstu.ru]А.Ю. Рожков

Моделирование продольного удара жесткого твердого тела по стержню, взаимодействующему с жесткой преградой000_4.pdf

Удар твердого тела по стержню с жесткой преградой на основе волновой модели продольного удара рассматривается в многочисленных работах отечественных и зарубежных исследователей. используются различные методы решения волнового уравнения для определения ударной силы и напряженно-деформированного состояния стержня. однако построение аналитических решений представляет громоздкую процедуру и, как правило, ограничивается несколькими циклами распространения формируемой волны деформации от ударного сечения до жесткой преграды и обратно. Эта процедура осложняется тем, что ударная система - механическая система с неудерживающими связями, и анализ динамического процесса требует определения момента разрыва контакта и перехода при этом разрыве к иному математическому описанию движения системы. В статье рассмотрена волновая модель продольного удара твердого тела по стержню. стержень представлен множеством сопряженных элементов малой длины с учётом волновых процессов внутри каждого элемента, преобразования волн на границах сопряжения элементов и неудерживающей связи в ударном сечении. Представлены результаты моделирования, обеспечивающего возможность анализа процесса удара, формирования и распространения волн деформаций в ударной системе, построения диаграмм напряженно-деформированного состояния стержневой системы в произвольный момент времени в процессе удара.

2017_ 1

Рубрика: Математическое моделирование

Тематика: Математическое моделирование.


УДК 519.248:658.562.012.7

Клячкин Владимир Николаевич, Ульяновский государственный технический университет, Доктор технических наук, профессор, окончил механический факультет Ульяновского политехнического института. В настоящее время профессор кафедры «Прикладная математика и информатика» Ульяновского государственного технического университета. Имеет научные труды в области надежности и статистических методов. [e-mail: v_kl@mail.ru]В.Н. Клячкин,

Зенцова Екатерина Александровна, Ульяновский государственный технический университет, Окончила факультет информационных систем и технологий УлГТУ, аспирантка кафедры «Прикладная математика и информатика» УлГТУ. Имеет статьи в области статистического контроля процессов. [e-mail: e_zentsova@mail.ru]Е.А. Зенцова

Построение адаптивных планов при многомерном статистическом контроле процессов000_6.pdf

Статистический контроль технологического процесса применяется для технологического обеспечения требуемого уровня качества путем своевременного вмешательства в ход процесса при нарушении его стабильности. Качество изделия, изготавливаемого в технологическом процессе, характеризуется несколькими показателями, часть из которых коррелированна. статистический контроль проводится отдельно для групп коррелированных и независимых показателей. Независимые показатели качества технологического процесса могут контролироваться с помощью стандартных карт Шухарта. Для контроля процесса по совокупности коррелированных показателей применяют многомерную контрольную карту Хотеллинга, основное назначение которой - отслеживание уровня настройки многопараметрического процесса. В ходе мониторинга карта позволяет обнаруживать большие смещения уровня настройки процесса, при этом малые смещения часто ею игнорируются. Для повышения эффективности обнаружения малых смещений предложено построение адаптивного плана контроля, параметры которого корректируются по результатам прогноза изменения уровня настройки в соответствии с текущим состоянием процесса. Характеристики плана стандартизированы по единым принципам с целью корректного сравнения адаптивных планов контроля.

Адаптивный план контроля, контрольная карта хотеллинга, марковские цепи.

2017_ 1

Рубрика: Математическое моделирование

Тематика: Математическое моделирование.


УДК 519.248:658.562.012.7

Зенцова Екатерина Александровна, Ульяновский государственный технический университет, окончила факультет информационных систем и технологий Ульяновского государственного технического университета, аспирантка кафедры «Прикладная математика и информатика» УлГТУ. Имеет статьи в области статистического контроля процессов. [e-mail: e_zentsova@mail.ru]Е.А. Зенцова

Сравнительный анализ подходов к оптимизации параметров контрольной карты хотеллинга000_7.pdf

В многопараметрическом процессе качество изготавливаемого изделия определяется множеством показателей. Применение одномерных контрольных карт для каждого отдельного показателя при наличии взаимосвязей между ними нецелесообразно, так как результаты независимого контроля могут оказаться недостоверными, возможны как необоснованные остановки процесса для наладки, так и пропуски реальных нарушений стабильности процесса. Поэтому статистический контроль процесса с коррелированными показателями качества осуществляется с использованием многомерных контрольных карт. Наиболее распространенным статистическим инструментом многомерного контроля является карта Хотеллинга. она применяется для анализа стабильности технологического процесса и позволяет обнаруживать большие смещения уровня настройки процесса. Для обеспечения диагностики малых смещений в настоящей работе предложено применение адаптивных планов контроля с различными наборами переменных параметров. использование предупреждающей границы в таких планах и усиление контроля при ее превышении способствуют раннему обнаружению момента разладки процесса. Для адаптивных планов определены условия корректного сравнения и сформулирована постановка задачи оптимизации. Критерием оптимальности служит величина, характеризующая время между моментом разладки процесса и получением сигнала от карты. В качестве метода решения задачи оптимизации предложен генетический алгоритм. В ходе исследования построены шесть адаптивных планов и проведен сравнительный анализ чувствительности этих планов к различным видам смещений уровня настройки процесса.

Адаптивный план контроля, контрольная карта хотеллинга, марковские цепи, генетический алгоритм.

2017_ 1

Рубрика: Математическое моделирование

Тематика: Математическое моделирование.


УДК 621.396.96, 621.396.969

Васильев Константин Константинович, Ульяновский государственный технический университет, доктор технических наук, профессор, заслуженный деятель науки и техники РФ, член-корреспондент АН республики Татарстан. Окончил радиотехнический факультет и аспирантуру Ленинградского электротехнического института им. В.И. Ульянова (Ленина). Заведующий кафедрой «Телекоммуникации» Ульяновского государственного технического университета. Имеет монографии, учебные пособия и статьи в области статистического синтеза и анализа информационных систем. [e-mail: vkk@ulstu.ru]К.К. Васильев,

Лучков Николай Владимирович, ФНПЦ АО «НПО «Марс», кандидат технических наук. Окончил радиотехнический факультет и аспирантуру на кафедре «Телекоммуникации» УлГТУ. Ведущий инженер-исследователь ФНПЦ АО «НПО «Марс». Имеет статьи в области статистических методов обработки сигналов. [e-mail: nik-lnv@mail.ru]Н.В. Лучков

Траекторная обработка на основе нелинейной фильтрации000_1.pdf

Рассмотрены задачи траекторной обработки радиолокационных наблюдений воздушных целей. В обеспечение траекторной обработки проведено моделирование первичных отметок радиолокационных целей с их пеленгами, углами места и амплитудами, на основе которых и сформированы для дальнейшей траекторной обработки единые координатные сигналы с максимально точными пространственными координатами и минимальной вероятностью дробления группы отметок от одной цели на две или большее число групп. Для организации траекторной обработки использованы многомодельные байесовские алгоритмы одновременного различения типов целей (моделей) и оценивания изменяющихся траекторных параметров. описана методика вычисления размера строба для отождествления наблюдений и траекторий. формирование набора отметок, которые в последующем используются для выделения траектории и оценки ее параметров, осуществлено при помощи операций стробирования и накопления отметок. В ходе обеих этих операций произведена селекция отметок, которые в принципе могут соответствовать отметкам от цели с известными динамическими характеристиками, а значит - потенциально составлять ее траекторию. При этом стробирование имеет дело с индивидуальными отметками, а накоплению в течение заданного временного интервала подвергаются отметки, прошедшие стробирование. Приведены математические модели изменения состояния в декартовой системе при наблюдении в сферических координатах и соответствующие уравнения нелинейного векторного оценивания. разработан комплекс программ и представлены некоторые результаты математического моделирования процесса траекторной обработки. Таким образом, предложенные методы и алгоритмы позволяют реализовать интегрированный подход к освещению обстановки театра военных действий с использованием всех имеющихся в наличии средств и могут стать основой при разработке протоколов единого информационно-управляющего пространства реального времени.

Радиолокация, статистические методы, траекторная обработка, обнаружение, различение, оценивание, нелинейный фильтр.

2017_ 1

Рубрика: Автоматизированные системы управления

Тематика: Автоматизированные системы управления, Математическое моделирование, Архитектура корабельных систем .


УДК 531.36 : 534.1

Андреев Александр Сергеевич, Ульяновский государственный университет, доктор физико-математических наук, профессор, окончил механикоматематический факультет Ташкентского государственного университета. Декан факультета математики, информационных и авиационных технологий Ульяновского государственного университета, заведующий кафедрой «Информационная безопасность и теория управления» УлГУ. Имеет статьи, учебные пособия, монографию в области теории устойчивости и управления движением механических систем. [e-mail: AndreevAS@ulsu.ru]А.С. Андреев,

Перегудова Ольга Алексеевна, Ульяновский государственный университет, доктор физико-математических наук, доцент, окончила механикоматематический факультет УлГУ. Профессор кафедры «Информационная безопасность и теория управления» УлГУ. Имеет статьи, учебные пособия, монографию в области теории устойчивости и управления движением механических систем. [e-mail: peregudovaoa@sv.ulsu.ru]О.А. Перегудова

Об управлении движением механической системы с учетом динамики приводов000_3.pdf

В статье решена задача о стабилизации программного движения голономной механической системы с учетом динамики приводов. Как известно, реализация управляющих сил и моментов для механических систем происходит с помощью исполнительных устройств (приводов), динамика которых оказывает влияние на процесс движения. Поэтому требование точности реализации управления современными механическими системами приводит к необходимости учитывать динамику приводов. Сложность задач построения законов управления для математических моделей механических систем с приводами состоит в том, что число степеней свободы такой системы выше размерности вектора управляющих сигналов. В работе использовано представление модели механической системы с приводом в виде каскадного соединения двух подсистем: механической и приводов. При этом вектор управления для механической подсистемы является состоянием подсистемы приводов. Такое представление позволяет решать задачу управления в виде двухшаговой процедуры. На первом шаге строится закон управления механической подсистемой в виде непрерывно-дифференцируемой функции времени, координат и скоростей, который осуществляет стабилизацию заданного программного движения. А затем на втором шаге для подсистемы приводов строится релейный закон управления, обеспечивающий асимптотическую устойчивость построенного выше стабилизирующего закона. Особенностью полученного в работе результата является применение знакопостоянной функции Ляпунова, что позволило существенно упростить выкладки по обоснованию релейного закона управления, а также условия его реализации. В качестве примера решена задача стабилизации программного движения пространственного трехзвенного манипулятора, управляемого при помощи трех независимых электроприводов постоянного тока.

Механическая система, стабилизация, программное движение, динамика приводов, знакопостоянная функция ляпунова.

2016_ 4

Рубрика: Математическое моделирование

Тематика: Математическое моделирование.


УДК 621. 914. 3-181

Кирилин Юрий Васильевич, Ульяновский государственный технический университет, доктор технических наук, профессор Ульяновского государственного технического университета, окончил механический факультет Ульяновского политехнического института. Имеет статьи, монографии, изобретения в области расчета и конструирования металлорежущих станков. [e-mail: kirilin51@mail.ru]Ю.В. Кирилин,

Демидов Сергей Анатольевич, Ульяновский государственный технический университет, аспирант кафедры «Металлорежущие станки и инструменты» УлГТУ, окончил машиностроительный факультет Мордовского государственного технического университета. Имеет статьи в области расчета металлорежущих станков. [e-mail: jilardino17@yandex.ru]С.А. Демидов,

Спиридонов Егор Анатольевич, ФНПЦ АО «НПО «Марс», аспирант кафедры «Металлорежущие станки и инструменты» УлГТУ, окончил машиностроительный факультет УлГТУ. Инженер-конструктор ФНПЦ АО «НПО «Марс». Имеет статьи в области расчета и конструирования металлорежущих станков. [e-mail: mars@mv.ru]Е.А. Спиридонов

Анализ влияния качества сетки твердотельных конечных элементов на точность расчетов динамических характеристик несущих систем станков000_4.pdf

В статье выполнен расчетный анализ статических и динамических характеристик стойки вертикально-фрезерного станка, представлены результаты расчетного анализа влияния качества сетки твердотельных конечных элементов на точность расчетов статических и динамических характеристик базовых деталей несущей системы металлорежущих станков. Показаны четыре способа разбиения модели стойки вертикально-фрезерного станка мод. 654 сеткой конечных элементов с построением амплитудно-частотных характеристик для каждого способа. Для оценки адекватности разрабатываемых расчетных моделей выполнено экспериментальное исследование стойки вертикально-фрезерного станка мод. 654 и построена ее экспериментальная амплитудно-частотная характеристика. Произведено сравнение результатов расчетного анализа с экспериментальными данными и выбран наилучший способ разбиения модели сеткой конечных элементов, который следует использовать для моделирования базовых деталей несущей системы вертикальнофрезерного станка.

Металлорежущий станок, виброустойчивость, жесткость, динамические характеристики, несущая система, базовые детали, динамическая податливость, резонансная частота.

2016_ 4

Рубрика: Математическое моделирование

Тематика: Математическое моделирование.


УДК 519.246.8

Кувайскова Юлия Евгеньевна, Ульяновский государственный технический университет, кандидат технических наук, доцент, окончила экономико-математический факультет Ульяновского государственного технического университета. Доцент кафедры «Прикладная математика и информатика» УлГТУ. Имеет работы в области моделирования и прогнозирования временных рядов. [e-mail: u.kuvaiskova@mail.ru]Ю.Е. Кувайскова,

Алёшина Анна Александровна, АО «Ульяновское конструкторское бюро приборостроения», кандидат технических наук, окончила экономико-математический факультет УлГТУ. Инженер-программист АО «Ульяновское конструкторское бюро приборостроения». Имеет работы в области моделирования и прогнозирования временных рядов. [e-mail: a2nia@mail.ru]А.А. Алёшина

Применение адаптивного регрессионного моделирования при описании и прогнозировании технического состояния объекта000_5.pdf

Безопасное функционирование технического объекта является важной задачей. Система управления техническим объектом часто включает подсистему мониторинга множества его параметров, и решение по управлению объектом принимается с учетом его технического состояния. Эффективность работы такой подсистемы существенно зависит от точности прогнозирования параметров технического объекта. Поэтому необходимо построение адекватных математических моделей контролируемых параметров объекта с последующим их использованием для прогнозирования состояния объекта и, соответственно, обеспечения эффективных и оперативных управленческих решений. Для решения поставленных задач в статье описываются алгоритмы математического моделирования и прогнозирования технического состояния объекта, основанные на адаптивном регрессионном моделировании, позволяющие повысить точность предсказаний до нескольких раз. Высокоточные результаты прогнозирования состояния объекта используются при принятии решений по управлению объектом. Эффективность предлагаемых алгоритмов исследуется на примере моделирования и прогнозирования технического состояния объекта.

Адаптивное регрессионное моделирование, временной ряд, прогнозирование, технический объект.

2016_ 4

Рубрика: Математическое моделирование

Тематика: Математическое моделирование.


УДК 004.8

Афанасьева Татьяна Васильевна, Ульяновский государственный технический университет, доктор технических наук, доцент, заместитель заведующего кафедрой «Информационные системы» Ульяновского государственного технического университета. Окончила радиотехнический факультет УлГТУ. Имеет статьи и монографии в области интеллектуального анализа временных рядов. [e-mail: tv.afanasjeva@gmail.com]Т.В. Афанасьева,

Сапунков Алексей Андреевич, Ульяновский государственный технический университет, аспирант кафедры «Информационные системы» УлГТУ, окончил факультет информационных систем и технологий УлГТУ. Имеет работы в области интеллектуального анализа временных рядов. [e-mail: sapalks@gmail.com]А.А. Сапунков,

Заварзин Денис Валерьевич, Ульяновский государственный технический университет, аспирант кафедры «Информационные системы» УлГТУ, окончил факультет информационных систем и технологий УлГТУ. Имеет работы в области интеллектуального анализа временных рядов. [e-mail: dzavarzin91@gmail.com]Д.В. Заварзин

Применение алгоритма кластеризации k-means для улучшения темпоральной статистики просмотра коммерческих предложений000_6.pdf

Аномалии рассматриваются как нетипичные и редко встречающиеся значения, значительно искажающие данные. Обычно такие значения приводят к неточным результатам в процессе анализа данных, поэтому они должны быть удалены. В статье предлагается применение метода кластеризации k-means для решения практической задачи по обработке данных для отображения темпоральной статистики в секторе b2b. Предметной областью и источником данных является сервис отправки и трекинга коммерческих предложений B2BFamily. В статье предлагается удалять аномалии и отображать более адекватную темпоральную статистику о среднем времени просмотра слайда коммерческого предложения. Это поможет менеджеру по продажам корректировать стратегию общения с клиентами. В заключении обсуждаются полученные результаты и дальнейшие тенденции развития данного исследования.

Кластеризация, аномалии, алгоритм кластеризации k-means, обнаружение и удаление аномалий.

2016_ 4

Рубрика: Математическое моделирование

Тематика: Математическое моделирование.


УДК 621.391.037

Гладких Анатолий Афанасьевич, Ульяновский государственный технический университет, доктор технических наук, окончил Военную академию связи им. С.М. Буденного, адъюнктуру ВАС, профессор кафедры «Телекоммуникации» Ульяновского государственного технического университета. Имеет монографию, учебные пособия, статьи и патенты РФ в области помехоустойчивого кодирования и защиты информации. [e-mail: a.gladkikh@ulstu.ru]А.А. Гладких,

Ал Тамими Таква Флайиих Хасан, Ульяновский государственный технический университет, аспирантка кафедры «Телекоммуникации» УлГТУ, окончила обучение в магистратуре и получила степень магистра в области компьютерных наук в Институте информатики для аспирантуры (Комиссия Ирака по компьютерам и информатике в Багдаде), работала преподавателем в инженерном колледже университета Диялы. Имеет статьи в области помехоустойчивого кодирования и защиты информации. [e-mail: taqwa75@mail.ru]Т.Ф. Ал Тамими

Математическая модель телекоммуникационных систем, используемых в интегрированных информационно-управляющих комплексах000_4.pdf

В статье рассматривается метод эффективной обработки кодовых комбинаций помехоустойчивых кодов, который опирается на возможность лексикографического разбиения пространства кодовых комбинаций на кластеры. Это позволяет на регулярной основе реализовать способ списочного декодирования кодовых векторов с использованием единственного списка, к которому относится кластер с нулевым номером. Показывается, что вектор любого другого кластера с использованием несложных преобразований может быть приведен к вектору нулевого кластера. Доказывается, что рассматриваемый метод применим к двоичным и недвоичным кодам.

Помехоустойчивый код, списочное декодирование, двоичные коды, недвоичные коды.

2016_ 3

Рубрика: Математическое моделирование

Тематика: Математическое моделирование, Автоматизированные системы управления , Архитектура корабельных систем .


УДК 621.391.037.3

Гладких Анатолий Афанасьевич, Ульяновский государственныйо технический университет, доктор технических наук, окончил Военную академию связи им. С.М. Буденного, адъюнктуру ВАС, профессор кафедры «Телекоммуникации» Ульяновского государственного технического университета. Имеет монографию, учебные пособия, статьи и патенты РФ в области помехоустойчивого кодирования и защиты информации. [e-mail: a.gladkikh@ulstu.ru]А.А. Гладких,

Наместников Сергей Михайлович, Ульяновский государственныйо технический университет, кандидат технических наук, окончил УлГТУ, аспирантуру там же, доцент кафедры «Телекоммуникации» УлГТУ. Имеет, статьи в области статистической обработки сигналов. [e-mail: sernam@ulstu.ru]С.М. Наместников,

Пчелин Никита Александрович, ФНПЦ АО «НПО «Марс», окончил Ульяновское высшее военное командное училище связи. Главный конструктор ФНПЦ АО «НПО «Марс». Имеет публикации в области помехоустойчивого кодирования. [e-mail: pna3@yandex.ru]Н.А. Пчелин,

Шагарова Анна Александровна, Ульяновский институт гражданской авиации им. главного маршала авиации Б.П. Бугаева, старший преподаватель кафедры «Общепрофессиональные дисциплины» Ульяновского института гражданской авиации им. главного маршала авиации Б.П. Бугаева, г. Ульяновск. Имеет публикации в области разнесенного приема сигналов в сетях беспроводной передачи информации. [e-mail: Nutka82@list.ru]А.А. Шагарова

Статические свойства и особенности формирования мягких решений недвоичных символов избыточных кодов000_5.pdf

В статье рассматриваются способы формирования мягких решений символов (МРС), используемые в системах с двоичной модуляцией. На основе испытаний оригинальных статистических моделей раскрываются свойства таких решений, показываются возможности их использования для решения задач адаптивной обработки сигналов. Учитывая особенности построения каскадных схем кодеков, впервые рассматривается задача формирования оценок надежности недвоичных символов на основе комплексной оценки результатов декодирования комбинаций внутреннего кода и статистических показателей МРС, полученных для символов этих комбинаций из непрерывного канала связи.

Мягкое решение символа, мягкое решение недвоичного символа, каскадное кодирование.

2016_ 3

Рубрика: Математическое моделирование

Тематика: Математическое моделирование, Автоматизированные системы управления , Архитектура корабельных систем .


УДК 004.627

Агеева Нина Сергеевна, Военная академия связи им. С.М. Буденного, младший научный сотрудник научно-исследовательской лаборатории Военной академии связи им. С.М. Буденного, г. Санкт-Петербург; соискатель Военной академии связи. Окончила инженерно-физический факультет Санкт-Петербургского национального исследовательского университета информационных технологий, механики и оптики. Имеет публикации и патенты в области кодирования и декодирования подвижных изображений. [e-mail: n.4geeva@gmail.com]Н.С. Агеева

Разработка взаимоувязанной системы показателей качества методов сжатия видеоданных для систем реального времени000_6.pdf

В работе на основе проведённого анализа основных существующих методов и алгоритмов кодирования видеоданных разработана взаимоувязанная система показателей качества методов сжатия видеоданных. Подобная система показателей качества имеет важное значение для формирования и передачи видеоинформации в системах, функционирующих в режиме времени, близком к реальному. Такими системами могут быть, например, системы передачи данных с борта беспилотного летательного аппарата на наземный пункт управления (НПУ). Приводятся результаты исследования проведенного в работе математического моделирования методов и алгоритмов сжатия видеоданных, позволяющие проводить анализ взаимного влияния критериев качества, а также их влияние на качество полученных видеоданных на НПУ.

Беспилотные летательные аппараты, сжатие видеоданных, восстановление видеоданных, неортогональное преобразование, ортогональное преобразование, фрактальное преобразование видеоданных, косинусное преобразование, вейвлет-преобразование, идентификация подвижных объектов, система показателей качества преобразования видеоданных, каналы связи, энтропийное кодирование, энтропийное декодирование.

2016_ 3

Рубрика: Математическое моделирование

Тематика: Математическое моделирование, Автоматизированные системы управления , Архитектура корабельных систем .


УДК 519.248

Клячкин Владимир Николаевич, Ульяновский государственный технический университет, доктор технических наук, профессор, окончил механический факультет Ульяновского политехнического института. В настоящее время профессор кафедры «Прикладная математика и информатика» Ульяновского государственного технического университета. Имеет научные труды в области надежности и статистических методов. [e-mail: v_kl@mail.ru]В.Н. Клячкин,

Карпунина Ирина Николаевна, Ульяновский институт гражданской авиации им. Главного маршала авиации Б.П. Бугаева, кандидат технических наук, доцент, окончила Московский авиационный институт, доцент кафедры «Общепрофессиональные дисциплины» Ульяновского института гражданской авиации им. Главного маршала авиации Б.П. Бугаева. Область научных интересов: динамика и прочность машин, надежность. [e-mail: karpunina53@yandex.ru]И.Н. Карпунина,

Федорова Мария Константиновна, Ульяновский государственный технический университет, окончила факультет информационных систем и технологий УлГТУ. Область научных интересов: компьютерные технологии статистического анализа данных. [e-mail: mashulka3031_94@mail.ru]М.К. Федорова

Оценка стабильности температурного режима компьютера000_7.pdf

Температурный режим существенно влияет на долговечность компьютера. Обеспечение надежности функционирования компьютера предполагает стабильный уровень температуры нагрева основных компонентов, не превышающий заданных значений. В статье рассматриваются вопросы, связанные со своевременным предупреждением о возможном нарушении стабильности температурного режима. Для диагностики стабильности предлагается использовать методы многомерного статистического контроля. Оценка стабильности режима проводится по двум критериям - по стабильности среднего уровня температур и их рассеяния. Независимые параметры могут контролироваться с помощью стандартных карт Шухарта. Для коррелированных параметров используются алгоритмы, основанные на статистике Хотеллинга (для оценки стабильности среднего уровня процесса изменения температур) и обобщенной дисперсии (для оценки стабильности рассеяния процесса). Эффективность этих алгоритмов может быть повышена путем анализа неслучайных структур на контрольных картах, использования предупреждающей границы, а также применения модификаций на базе кумулятивных сумм или экспоненциально взвешенных скользящих средних. В настоящей статье предложена методика многомерного статистического контроля температурного режима компьютера, включающая проведение контроля в условиях отлаженного процесса по обучающей выборке с целью разделения контролируемых параметров на группы независимых и коррелированных, анализ процесса для оценки характеристик контроля и постоянный мониторинг процесса с построением карт Хотеллинга и обобщенной дисперсии с выявлением возможных нарушений процесса на основе наличия неслучайных структур и использования предупреждающей границы. Эта методика проиллюстрирована на примере контроля пяти параметров температурного режима компьютера.

Стабильность, температурный режим, алгоритм хотеллинга, предупреждающая граница, обобщенная дисперсия, контрольная карта.

2016_ 3

Рубрика: Математическое моделирование

Тематика: Математическое моделирование, Автоматизированные системы управления , Электротехника и электронные устройства .


УДК 519.6

Кадырова Гульнара Ривальевна, Ульяновский государственный технический университет, кандидат технических наук, окончила радиотехнический факультет Ульяновского политехнического института. Доцент кафедры «Прикладная математика и информатика» УлГТУ. Имеет статьи, монографии, учебные пособия в области статистического моделирования, программных информационных систем. [e-mail: gulya@ulstu.ru]Г.Р. Кадырова

Модификация метода пошаговой регрессии для получения математических моделей прогноза поведения объекта000_8.pdf

В статье представлен алгоритм модифицированной версии метода пошаговой регрессии, реализованный в статистическом пакете «Система поиска оптимальных регрессий» (СПОР). Данный метод используется для поиска оптимальной структуры модели процессов или функционирования технических объектов, предназначенной, помимо их описания, для оптимизации, управления и прогноза. Основным инструментом положительного воздействия на прогностические свойства модели является алгоритм поиска ее оптимальной структуры. Обычно при невозможности применить полный однокритериальный перебор структур прибегают к тому или иному виду неполного перебора. При этом регулярный или случайный перебор в условиях ограничения типа (≤) на количество слагаемых в модели обеспечивает достаточно эффективный учет систематических составляющих. Проведенные исследования позволяют считать данный метод перспективным математическим подходом для сокращения размерности модели и повышения точности определения ее параметров и прогноза.

Регрессионное моделирование, прогнозирование, методы структурной идентификации, пошаговая регрессия, меры качества, статистический пакет.

2016_ 3

Рубрика: Математическое моделирование

Тематика: Математическое моделирование, Исследование операций и принятие решений.


УДК 621.377

Иванов Александр Куприянович, ФНПЦ АО «НПО «Марс», доктор технических наук, заслуженный деятель науки и техники Ульяновской области, окончил физический факультет Иркутского государственного университета, аспирантуру Московского высшего технического училища им. Н.Э. Баумана, докторантуру Ульяновского государственного технического университета. Главный научный сотрудник ФНПЦ АО «НПО «Марс». Имеет монографии, учебное пособие, статьи в области математического моделирования иерархических АСУ реального времени. [e-mail: mars@mv.ru]А.К. Иванов

Динамические модели информационных процессов иерархических систем управления000_1.pdf

На основе единой нумерации объектов иерархической системы управления построена динамическая модель процессов освещения обстановки и планирования управления. Для каждого объекта системы составлены системы дифференциальных уравнений, описывающие информационные процессы. Получены аналитические решения для трех низших уровней иерархии при освещении обстановки и для трех высших уровней иерархии при планировании управления. Аналитические решения представляют собой зависимости объемов информационных ресурсов от времени, скорости обработки информации и объема исходных данных. Построение модели основано на условии сохранения объема информационных ресурсов при всех преобразованиях. Показана реальная возможность аналитического решения дифференциальных уравнений для объектов всех уровней. Приведены результаты расчетов информационных процессов в двухуровневых системах. Построенные модели позволяют оперативно и без существенных затрат проводить исследования определенных свойств системы в различных ситуациях, например, оценить время цикла управления при изменениях скорости обработки информации на объектах. На этапах проектирования использование моделей дает возможность формализовать и автоматизировать поиск оптимальных проектных решений, обеспечивая повышение качества и снижение стоимости.

Иерархические системы управления, информационные процессы, дифференциальные модели.

2016_ 3

Рубрика: Автоматизированные системы управления

Тематика: Автоматизированные системы управления, Математическое моделирование, Информационные системы.


УДК 621.377

Иванов Александр Куприянович, ФНПЦ АО «НПО «Марс», доктор технических наук, заслуженный деятель науки и техники Ульяновской области, окончил физический факультет Иркутского государственного университета, аспирантуру Московского высшего технического училища им. Н.Э. Баумана, докторантуру Ульяновского государственного технического университета. Главный научный сотрудник ФНПЦ АО «НПО «Марс». Имеет монографии, учебное пособие, статьи в области математического моделирования иерархических АСУ реального времени. [e-mail: mars@mv.ru]А.К. Иванов,

Кукин Андрей Евгеньевич, ФНПЦ АО «НПО «Марс», аспирант кафедры «Телекоммуникационные технологии и сети» Ульяновского государственного университета, окончил факультет информационных технологий УлГУ. Инженерпрограммист ФНПЦ АО «НПО «Марс». Имеет статьи в области разработки программного обеспечения для АСУ. [e-mail: mars@mv.ru]А.Е. Кукин,

Чернышев Илья Васильевич, Ульяновский государственный технический университет, кандидат военных наук, окончил Новосибирский электротехнический институт связи, адьюнктуру Военной академии связи им. С.М. Буденного, УлГТУ. Доцент кафедры «Экономика и менеджмент» экономико-математического факультета УлГТУ. Имеет учебные пособия, статьи в области разработки и моделирования автоматизированных систем управления. [e-mail: chernyshev@ulstu.ru]И.В. Чернышев

Оптимизация вероятностно-временных характеристик системы с использованием имитационной модели000_2.pdf

Рассмотрена актуальная задача повышения оперативности иерархической системы управления реального времени за счет рационального распределения ресурсов и уменьшения времени разработки управляющих документов на объектах системы. Описан порядок построения теоретической зависимости вероятностно-временных характеристик (ВВХ) системы от соответствующих характеристик объектов. Приведен алгоритм разработки приближенных аналитических зависимостей на основе аппроксимации экспериментальных данных, полученных имитационным моделированием. Формально поставлена и решена задача распределения ресурсов в иерархической системе управления по объектам с целью оптимизации ВВХ. Показано, что при существующей производительности вычислительной техники в качестве целевой функции можно использовать имитационную модель системы вместо приближенной аналитической зависимости. Имитационная модель включает множество экспериментов, в каждом из которых устанавливаются случайные значения времени разработки управляющих документов на объектах и в соответствии со структурой и алгоритмом функционирования определяются системные характеристики. Применение имитационных моделей значительно расширяет класс задач проектирования сложных систем, решаемых с использованием методов исследования операций.

Автоматизированная система управления, оперативность, оптимальное проектирование, имитационная модель.

2016_ 3

Рубрика: Автоматизированные системы управления

Тематика: Автоматизированные системы управления, Математическое моделирование, Информационные системы, Исследование операций и принятие решений.


© ФНПЦ АО "НПО "Марс", 2009-2017 Работает на Joomla!